Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial

Álvaro Guzmán Aponte, Diana Marcela Burgos Galindo, Nancy Torres Castellanos

Resumen


En este artículo se presentan los resultados de un estudio de viabilidad técnica de uso de agregado reciclado fino comercial (ARF) proveniente de concretos de las actividades de construcción y demolición (RC&D), en la fabricación de concreto de mediana resistencia. Con el fin de evaluar el desempeño mecánico y durable de los concretos, se estudiaron diferentes propiedades como la densidad, absorción, sorptividad, resistencia mecánica, tracción indirecta y permeabilidad al ion cloruro, de concretos con incorporación de 20% y 40% de ARF (ARF20% y ARF40%, respectivamente) en reemplazo del agregado fino natural. Los resultados se compararon con un concreto de referencia incorporando agregado fino natural (ARF0%).

Se encontró que la incorporación de ARF hasta un 40% en los concretos, no causa un detrimento marcado en la consistencia del concreto en estado fresco. En términos generales, a pesar de que las propiedades físicas, mecánicas y de durabilidad de los concretos en estado endurecido disminuyen con el incremento en la incorporación de ARF en reemplazo del agregado fino natural; los valores de las propiedades alcanzadas por los concretos ARF20% y ARF40%, fueron comprables a aquellas alcanzadas por el concreto de referencia ARF0%, y aptas para la construcción de concretos de mediana resistencia.

Palabras clave


agregado reciclado fino, concreto, durabilidad, propiedades mecánicas, resistencia a cloruro, sorptividad

Texto completo:

PDF

Referencias


Abdurrahmaan, L., & Al-Fayez, M. (2015). Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate. Cement and Concrete Composites, 61, 36-43. doi: 10.1016/j.cemconcomp.2015.02.009.

Akbarnezhad, A., Ong, K.C.G., Zhang, M.H., Tam, C.T., & Foo, T.W.J. (2011). Microwave-assisted beneficiation of recycled concrete aggregates. Construction and Building Materials, 25(8), 3469-3479. doi: 10.1016/j.conbuildmat.2011.03.038.

American Society for Testing and Materials, 2016. ASTM C33-16 Standard Specification for Concrete Aggregates. West Conshohocken, PA: ASTM.

American Society for Testing and Materials, 2017. ASTM C39-17 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM.

American Society for Testing and Materials, 2011. ASTM C496-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM.

American Society for Testing and Materials, 2013. ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA: ASTM.

American Society for Testing and Materials, 2012. ASTM C1202-12 Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. West Conshohocken, PA: ASTM.

Ann, K.Y., Ahn, J.H., & Ryou, J.S. (2009) The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction and Building Materials, 23(1), 239–45. doi: 10.1016/j.conbuildmat.2007.12.014.

Braga, M., De Brito, J., & Veiga, R. (2014). Reduction of the cement content in mortar made with fine concrete aggregates. Materials and Structures, 47(1-2), 171-182.

Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357-369.doi: 10.1016/j.conbuildmat.2014.12.103.

De Brito, J., & Saikia, N. (2013). Recycled aggregate in concrete: Use of industrial, construction and demolition waste. London, UK: Springer.

Delay, M., Lager, T., Schulz, H.D., & Frimmel, F.H. (2007). Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Management, 27(2), 248-255. doi: https://doi.org/10.1016/j.wasman.2006.01.013.

Dosho, Y. (2007). Development of a sustainable concrete waste recycling system – application of recycled aggregate concrete produced by aggregate replacing Method. Journal of Advanced Concrete Technology, 5(1), 27-42. doi: 10.3151/jact.5.27.

EMPA-SIA 162/1, 1989. Test No. 5- Water conductivity, Suiza.

European Aggregates Association. (2012). Annual review. Brussels, Belgium.

Evangelista, L., & De Brito, J. (2004). Criteria for the use of fine recycled concrete aggregates in concrete production. Conference: Conference on the Use of Recycled Materials in Building and Structures, RILEM, At Barcelona, Spain.

Evangelista, L., & De Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement & Concrete Composites, 32(1), 9–14. doi: 10.1016/j.cemconcomp.2009.09.005.

González-Fonteboa, B., Martínez-Abella, F., Herrador, M.F., & Seara-Paz, S. (2012). Structural recycled concrete : Behaviour under low loading rate. Construction and Building Materials, 28(1): 111-116. doi: 10.1016/j.conbuildmat.2011.08.010.

Hongru, Z., & Yuxi, Z. (2015). Integrated interface parameters of recycled aggregate concrete. Construction and Building Materials, 101, 861–877. doi: 10.1016/j.conbuildmat.2015.10.084.

Howland, J.J., & Martín, A.R. (2013). Estudio de la absorción capilar y la sorptividad de hormigones con áridos calizos cubanos. Materiales de construcción, 312, 515-527.

Khatib, J.M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement & Concrete Research, 35(4), 763-769. doi: 10.1016/j.cemconres.2004.06.017.

Kosmatka, S., Kherkhoff, B., & Panarese, W. (2002). Design and control of concrete mixtures. Chapter 5. Publisher: Portland Cement Association.

Kou, S., & C, Poon. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76. doi: 0.1016/j.conbuildmat.2012.02.032.

Kou, S.C., Zhan, B., & Poon, C. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement and Concrete Composites, 45, 22-28. doi: 10.1016/j.cemconcomp.2013.09.008.

Levy, S., & Helene, P. (2004). Durability of recycled aggregates concrete: a safe way to sustainable development. Cement and Concrete Research, 34(11), 1975–1980. doi: 10.1016/j.cemconres.2004.02.009.

Li, W. (2002). Composition Analysis of Construction and Demolition Waste and Enhancing Waste Reduction and Recycling in Construction Industry in Hong Kong. Department of Building and Real Estate. (M.Sc Thesis). The Hong Kong Polytechnic University: Hong Kong, China.

Liu, Q., Xiao, J., & Sun, Z. (2011). Experimental study on the failure mechanism of recycled concrete. Cement & Concrete Research, 41(10), 1050-1057. doi: 10.1016/j.cemconres.2011.06.007.

Marie, I., & Quiasrawi, H. (2012). Closed-loop recycling of recycled concrete aggregates. Journal of Cleaner Production, 37, 243-248. doi: https://doi.org/10.1016/j.jclepro.2012.07.020.

Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255-2264. doi:10.1016/j.wasman.2010.04.012.

Medina, C., Banfill, P. F. G., Sanchez de Rojas, M., & Frías, M. (2013). Rheological behaviour of cements blended with containing ceramic wastes. In N. Roussel, & H. Bessaies-Bey (Eds.), Rheology and processing of construction materials: 7th RILEM International Conference on Self-Compacting Concrete and 1st RILEM International Conference on Rheology and Processing of Construction Materials (1 ed., Vol. PRO90, pp. 65-74). Paris: RILEM. Recuperado de https://pureapps2.hw.ac.uk/ws/portalfiles/portal/7700978.

Méndez, S. (2011). Aprovechamiento de escombros: una oportunidad para mejorar la infraestructura de las comunidades marginadas. In II Conferencia Internacional “Gestión de Residuos en América Latina GRAL”.

Mindess, S., Young, J.F., & Darwin, D. (2003). Concrete. 2nd ed. Upper Saddle River, N.J: Prentice Hall.

Otsuki, N.M., Miyazato, S., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–51. doi: 10.1061/(ASCE)0899-1561(2003)15:5(443).

Pinzón, A. (2013). Formulación de lineamientos para la gestión de residuos de construcción y demolición (RCD) en Bogotá. (Tesis de especialización, Universidad Militar Nueva Granada). Universidad Militar Nueva Granada: Bogotá, Colombia. Recuperado de http://repository.unimilitar.edu.co/bitstream/10654/11004/1/TRABAJO%20DE%20GRADO%20ADRIANA%20ISABEL%20PINZON%20M..pdf.

Poon, C., & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources Conservation and Recycling, 50(3), 293–305. doi: 10.1016/j.resconrec.2006.06.005.

Ravindrarajah, R.S., & Tam, C.T. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37(130), 29-38.

Ravindrarajah, R.S., Loo, Y.H., & Tam, C.T. (1987). Recycled concrete as fine and coarse aggregates in concrete. Magazine of Concrete Research, 39(141), 214–220.

Roussat, N., Dujet, C., & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste Management, 29(1), 12-20. doi:10.1016/j.wasman.2008.04.010.

Vázquez, E., Barra, M., Aponte, D., Jiménez, C., & Valls, S. (2014). Improvement of the durability of concrete with recycled aggregates in chloride exposed environment. Construction and Building Materials, 67, 61–67. doi: 10.1016/j.conbuildmat.2013.11.028.

Wirquin, E., Hahdjeva-Zahaarieva, R., & Buyle-Bodin, F. (2000). Use of water absorption by concrete as a criterion of the durability of concrete – application to recycled aggregate concrete. Materials and Structures, 33(6), 403-408.

Xuan, D., Zhan, B., & Poon, C. (2016). Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement and Concrete Composites, 65, 67-74. doi: 10.1016/j.cemconcomp.2015.10.018.

Zega, C.J., & Di Maio, A.A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(11), 2336–2340. doi: 10.1016/j.wasman.2011.06.011.

Zhan, B., Poon, C., Liu, Q., Kou, S., & Shi, C. (2014). Experimental study on CO2 curing for enhancement of recycled aggregate properties. Construction and Building Materials, 67, 3–7. doi: 10.1016/j.conbuildmat.2013.09.008.




DOI: https://doi.org/10.24050/reia.v16i32.1210

Métricas de artículo

Vistas de resumen
16




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 Revista EIA

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.




 

 

 

 

 

UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |