Efecto de la Pendiente y de la Infiltración del Suelo en las Concentraciones de Iones de Nitrato en el Agua

Effect of the Ground Slope and Soil Infiltration on the Water Nitrate Ion Concentrations

Contenido principal del artículo

Maura Melissa Herrera Ceferino
Juan Camilo Viviescas Restrepo
Néstor Jaime Aguirre Ramírez

Resumen

La caracterización del suelo juega un papel esencial en el flujo de agua y la disponibilidad de nutrientes. De acuerdo con lo anterior, esta investigación buscó encontrar una relación entre la pendiente del suelo, la distribución del tamaño de grano de las partículas del suelo, la tasa de infiltración y el movimiento del ion nitrato a través del perfil del suelo y en la capa freática de la Quebrada La Nitrera, ubicada en un Reserva forestal natural colombiana. Se observó que la pendiente y la tasa de infiltración explican las concentraciones de nitrato de un sitio a otro. Además, en abril de 2018, donde en promedio hay más precipitación para el área de estudio, se informó la concentración más alta de iones de nitrato de agua subterránea (18 mg / L) de acuerdo con el valor estándar para aguas naturales (10 mg / L). Esto sugiere que los eventos hidrológicos también influyen en el transporte de estos minerales.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Juan Camilo Viviescas Restrepo

Universidad de Antioquia, Medellín.

Néstor Jaime Aguirre Ramírez

Universidad de Antioquia, Medellín.

Referencias (VER)

Connolly, C. T. et al. (2018) ‘Watershed slope as a predictor of fluvial dissolved organic matter and nitrate concentrations across geographical space and catchment size in the Arctic’, Environmental Research Letters. doi: 10.1088/1748-9326/aae35d.

Departamento Administrativo de Planeación (2009) Cátedra municipal. Edited by A. municipal Concordia.

Donoso, C. (1994) Ecología forestal. 4ta Edició. Edited by E. Universitaria. Santiago, Chile.

Duffková, R. et al. (2019) ‘Experimental evaluation of the potential of arbuscular mycorrhiza to modify nutrient leaching in three arable soils located on one slope’, Applied Soil Ecology. doi: 10.1016/j.apsoil.2019.06.001.

González, L., González, A. and Mardones, A. (2003) ‘Evaluación de la vulnerabilidad natural del acuífero freático en la cuenca del río Laja, centro-sur de Chile’, Revista Geológica de Chile, 30(1), pp. 3–22.

IGAC (2007) Estudio general de suelos y zonificación de tierras del departamento de Antioquia. Tomo I.

Kasper, M. et al. (2019) ‘N2O emissions and NO3 2 leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach’, Nutr Cycl Agroecosyst, 113, pp. 95–111. Available at: https://doi.org/10.1007/s10705-018-9965-z.

Mejía, G. (1963) Conocimientos básicos de suelos. Universidad de Caldas, Manizales.

Montenegro, H. and Malagón, D. (1990) Propiedades físicas de los suelos. Sección im.

O’leary, M., Rehm, G. and Schmitt, M. (1989) Understanding Nitrogen in Soils. University of Minnesota.

Ouedraogo, I., Defourny, P. and Vanclooster, M. (2019) ‘Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale, Hydrogeology Journal. doi: 10.1007/s10040-018-1900-5.

Pachecho, J. and Cabrera, A. (2003) ‘Fuentes principales de nitrógeno de nitratos en aguas subterráneas’, Ingeniería, 7(2), pp. 47–54.

Ram Maharjan, G. et al. (2018) ‘Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models’, Soil and Tillage Research, 180, pp. 210–221. Available at: https://doi.org/10.1016/j.still.2018.03.009.

Razavi Dizaji, A. et al. (2020) ‘Assessing pollution risk in ardabil aquifer groundwater of iran with arsenic and nitrate using the SINTACS model’, Polish Journal of Environmental Studies. doi: 10.15244/pjoes/112903.

Rebolledo, B. et al. (2016) ‘Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model’, Journal of Environmental Management. doi: 10.1016/j.jenvman.2016.01.041.

Thiers, Ó. and Gerding, V. (2007) ‘Variabilidad topográfica y edáfica en bosques de Nothofagus betuloides (Mirb) Blume en el suroeste de Tierra del Fuego’, Revista Chilena de Historia Natural, 80(2), pp. 201–211.

Vidon, P. G. and Hill, A. R. (2006) ‘A landscape-based approach to estimate riparian hydrological and nitrate removal functions’, Journal of the American Water Resources Association. doi: 10.1111/j.1752-1688.2006.tb04516.x.

Xie, M. et al. (2019) ‘Nitrate subsurface transport and losses in response to its initial distributions in sloped soils: An experimental and modelling study’, Hydrological Processes, pp. 1–15.

Yang, S. H. et al. (2020) ‘Variation of deep nitrate in a typical red soil Critical Zone: Effects of land use and slope position’, Agriculture, Ecosystems and Environment. doi: 10.1016/j.agee.2020.106966.

Zhou, J. et al. (2016) ‘Significant accumulation of nitrate in Chinese semi-humid croplands’, Scientific Reports. Nature Publishing Group, 6(1), pp. 1–8. doi: 10.1038/srep25088.