Clasificador bayesiano de dos clases para seleccionar la mejor regla de prioridad en un problema Job Shop: Open Shop

Omar Danilo Castrillón Gomez, William Ariel Sarache, Santiago Ruiz Herrera

Resumen


El objetivo de este trabajo es seleccionar, por medio de un clasificador bayesiano de dos clases, la mejor regla de prioridad que puede ser aplicada en un problema Job Shop: Open Shop.  En una primera fase se expone el diseño del clasificador, entrenado con 300 problemas generados aleatoriamente. En 150 de ellos,  la mejor regla de prioridad  para secuenciarlos fue FIFO (First in First Out) y en los restantes fue la regla LPT (Long Process Time). En una segunda fase, un conjunto de 300 problemas diferentes, con las mismas características de la primera fase, fueron generados aleatoriamente. Estos problemas fueron clasificados previamente (sin secuenciarlos) por medio la técnica bayesiana propuesta. Los resultados demuestran que en el 96% de los casos, el clasificador propuesto logra identificar la mejor regla de  prioridad para secuenciar pedidos

Palabras clave


Programación de la producción; Reglas de prioridad; Clasificador Bayesiano; Job Shop: Open Shop

Texto completo:

PDF

Referencias


Baltazar, a., aranda, J. I. & Aguilar, G. G. (2008). Bayesian classification of ripening stages of tomato fruit using acoustic impact and colorimeter sensor data. computers and electronics in agriculture, No. 60, pp. 113-121.

Dallaire, P., Giguère, P., Émond, D. & Chaib-draa, B. (2014). Autonomous tactile perception: A combined improved sensing and Bayesian nonparametric approach. Robotics and Autonomous Systems, No. 62, pp. 422-435.

Del Sagrado, J., Sanchez, J. A., Rodriguez, F. & Berenguel, M. (2016). Bayesian networks for greenhouse temperature control. Journal of Applied Logic, http://dx.doi.org/10.1016/j.jal.2015.09.006, Article in press.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Patter Classification. New York, Estados Unidos: John Wiley & Sons, Pagina 41.

Fernandez, E. (2016). Analisis de clasificadores Bayesianos. Argentina: Laboratorio de sistemas Inteligentes, Consultado 18 de febrero de 2006, disponible en http://materias.fi.uba.ar/7550/clasificadores-bayesianos.pdf

Hanen , B., Concha , B., Toro, C. & Larragaña, P. (2013). Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. Artificial Intelligence in Medicine, No. 57, pp. 219-229.

He, L., Liu, B., Hu, D., Wen, Y., Wan, M. & Long, J. (2015). Motor Imagery EEG Signals Analysis Based on Bayesian Network with Gaussian Distribution. Neurocomputing, http://dx.doi.org/10.1016/j.neucom.2015.05.133 (Article in press).

Karabatak, M. (2015). A new classifier for breast cancer detection based on Naïve Bayesian. Measurement, No. 72, pp. 32-36.

Mujalli, R. O., Lopez, G. & Garach L. (2016). Bayes classifiers for imbalanced traffic accidents data sets. Accident Analysis and Prevention, No. 88, pp. 37-51.

Mukherjee, S. & Sharmaa, N. (2012). Intrusion Detection using Naive Bayes Classifier with Feature Reduction. Procedia Technology, No. 4, pp. 119-128.

Roy, S., Shivakumara, P., Roy, P. P., Pal, U., Tan, C. L. & Lu, T. (2015). Bayesian classifier for multi-oriented video text recognition system. Expert Systems with Applications, No. 42, pp. 5554-5556.

Salama, K. M. & Freitas. (2014). A. A. Classification with cluster-based Bayesian multi-nets using Ant Colony Optimization. Swarm and Evolutionary Computation, No. 18, pp. 54-70.

Sun, L., Lin, L., Wang, Y., Gen, M. & Kawakami, H. (2015). A Bayesian Optimization-based Evolutionary Algorithm for Flexible Job Shop Scheduling. Procedia Computer Science, No. 61, pp. 521-526.

Wiggins, M., Saad, A. & Litt, B. (2008). Vachtsevanos, G. Evolving a Bayesian classifier for ECG-based age classification in medical applications. Applied Soft Computing, No. 8, pp. 599-608.

Xiang, C., Yong, P. C. & Meng, L. S. (2008). Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recognition Letters, No. 29, pp. 918-924.

Yin, W., Kissinger, J. C., Moreno, A., Galinski, M. R. & Styczynski. (2015). M. P. From genome-scale data to models of infectious disease: A Bayesian network-based strategy to drive model development. Mathematical Biosciences, No. 260, pp. 156-168.

Zaidan, A., Ahmad, N., Karim, H. A., Larbani, M., Zaidan & B. Sali. (2014). A. On themulti-agent learning neural and Bayesian methods in skin detector and pornography classifier: An automated anti-pornography system. Neurocomputing, No. 131, pp. 397-418.




DOI: https://doi.org/10.24050/reia.v16i31.867

Métricas de artículo

Vistas de resumen
16




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.




 

 

 

 

 

UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |