PATRONES DE TURING SOBRE ESFERAS CON CRECIMIENTO CONTINUO (TURING PATTERNS ON SPHERES WITH CONTINUOUS GROWTH)

Diego A. Garzón, Angélica M. Ramírez, Carlos A. Duque

Resumen


En este artículo se desarrollan varios ejemplos numéricos sobre ecuaciones de reacción-difusión con dominio creciente, empleando el modelo de reacción de Schnakenberg, con parámetros en el espacio de Turing. Por tanto, se realizan ensayos numéricos sobre la aparición de los patrones de Turing en superficies esféricas. Para la solución de las ecuaciones de reacción-difusión se presenta un método de solución en superficies en tres dimensiones mediante el método de los elementos finitos con el uso de la formulación lagrangiana total. Los resultados muestran que la formación de los patrones de Turing depende de la velocidad de crecimiento de la superficie, el tipo de número de onda predicho en la teoría de dominios cuadrados y su tiempo de estabilización. Estos resultados pueden esclarecer algunos fenómenos de cambio de patrón en la superficie de la piel de los animales que exhiben manchas características.

Abstract: We have developed several numerical examples of reaction-diffusion equations with growth surface domain. In this research we use the Schnakenberg reaction model, with parameters in the Turing space. Therefore, numerical tests are performed on the appearence ofTuring patterns in spherical surfaces. For the solution of reaction diffusion equations provides a method of settling on surfaces in three dimensions using the finite element method under the total Lagrangian formulation. The results show that the formation of Turing patterns depends on the growth rate of the surface, the type of wave number predicted in the theory of square domains and their stabilization time. These results may explain some phenomena of pattern change on the surface of the skin of animals that exhibit characteristic spots.


Palabras clave


reacción-difusión; Turing; lagrangiano total; elementos finitos; deformación de superficies. Keywords: reaction-diffusion; Turing; total Lagrangian; finite elements; deformation of surfaces.

Texto completo:

PDF


DOI: https://doi.org/10.24050/reia.v9i17.448

Métricas de artículo

Vistas de resumen
113




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c)






 

 

 

 

 

UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |