Identifying the Characteristics After Microwave Inactivation for Recovering Materials to Make Plastic Wood

Identificación de las Características de Tras la Inactivación por Microondas Destinada a Recuperar Materiales Para Producir Madera Plástica

Contenido principal del artículo

Cindy Natalia Arenas
Mariluz Betancur Vélez
Carlos Federico Vélez
Ana Zoraida Gómez Díaz
Juan Daniel Martínez Ángel

Resumen

In hospitals in Colombia, inactivation processes of sanitary wastes are usually carried out by external managers, which are taken directly to the landfill to close the cycle after removing the biological load, which leads to the generation of high CO2 emissions not only for the process implemented, but also for the transport that this implies. This work shows the main results of the inactivation process with a commercial microwave technology, for which it was necessary to run 10 samples of sanitary waste from different areas (surgery, pediatric emergencies, hospitalization, etc.), and evaluate the effectiveness of inactivation by measuring the presence of microorganisms, the inactivated by-products were characterized and analyzed thoroughly to identify their potential as raw material for plastic wood. The carbon footprint associated with the avoided transport to common sites outs/ide the cities to inactivate high volumes of waste and the subsequent emissions associated with the final landfill were also determined. In this sense, it was shown that the inactivation process is efficient and allows compliance with Colombian regulations, since there is no evidence of the presence of microorganisms. In addition, the characterization process identified that the waste contains mainly plastic and textile waste, which makes it a good alternative for obtaining plastic wood and closing the cycle of such waste. Finally, it was evidenced that scenario 1, in which the Sterilwave was used, is undoubtedly the alternative that generates the least emissions in tons of CO2e.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citaciones

Crossref
Scopus
Europe PMC

Referencias (VER)

Adyel, T. M. (2020). Accumulation of plastic waste during COVID-19. Science, 369, 1314–1315. https://www.science.org/doi/10.1126/science.abd9925

Anca-Couce, A. (2016). Reaction mechanisms and multi-scale modeling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science, 53, 41–79. https://doi.org/10.1016/j.pecs.2015.10.002

Bertin Medical Waste. (2018). Microbial inactivation by microwave treatment, a revolution for medical waste management. https://www.bertin-medical-waste.com/microbial-inactivation-by-microwave-treatment-a-revolution-for-medical-waste-management/

Chhabra, V.; Bhattacharya, S.; Shastri, Y. (2019). Pyrolysis of mixed municipal solid waste: Characterization, interaction effect and kinetic modelling using the thermogravimetric approach. Waste Management, 90, 152–167. https://doi.org/10.1016/j.wasman.2019.03.048

Chen, S.; Meng, A.; Long, Y.; Hui, Z.; Qinghai, L.; Yanguo, Z. (2015). TGA pyrolysis and gasification of combustion municipal solid waste. Journal of the Energy Institute, 88, 332–343. https://doi.org/10.1016/j.joei.2014.07.007

Cho, M. H.; Jung, S. H.; Kim, J. S. (2010). Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives. Energy and Fuels, 24, 1389–1395. https://doi.org/10.1021/ef901127v

Dianda, P.; Mahidin; Munawar, E. (2018). Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW). Materials Science and Engineering, 334(1), 012035. https://doi.org/10.1088/1757-899X/334/1/012035

Dursun, M.; Karsak, E. E.; Karadayi, M. A. (2011). Assessment of health-care waste treatment alternatives using fuzzy multi-criteria decision-making approaches. Resources, Conservation and Recycling, 5, 97–107. https://doi.org/10.1016/j.resconrec.2011.09.012

Font, R.; Fullana, A.; Caballero, J. A.; Candela, J.; García, A. (2001). Pyrolysis study of polyurethane. Journal of Analytical and Applied Pyrolysis, 58–59, 63–77. https://doi.org/10.1016/S0165-2370(00)00138-8

Goldblith, S. A.; Wang, D. I. C. (1967). Effect of microwaves on Escherichia coli and Bacillus subtilis. Applied Microbiology, 15, 1371–1375. https://doi.org/10.1128/am.15.6.1371-1375.1967

Hall, W. J.; Zakaria, N.; Williams, P. T. (2009). Pyrolysis of latex gloves in the presence of Y-zeolite. Waste Management, 29, 797–803. https://doi.org/10.1016/j.wasman.2008.06.031

Heikkinen, J. M.; Hordijk, J. C.; de Jong, W.; Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71, 883–900. https://doi.org/10.1016/j.jaap.2003.12.001

Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2019). Información nacional de residuos o desechos peligrosos en Colombia. Bogotá: IDEAM. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023901/InformeResiduos2019.pdf

Kara, M. (2012). Environmental and economic advantages associated with the use of RDF in cement kilns. Resources, Conservation and Recycling, 68, 21–29. https://doi.org/10.1016/j.resconrec.2012.06.011

Karmakar, G. (2020). Regeneration and recovery of plastics. Reference Module in Materials: Science and Materials Engineering. https://doi.org/10.1016/B978-0-12-818617-6.00051-1

Kimani, A. (2020). How the COVID-19 plastic boom could save the oil industry. OilPrice.com. https://oilprice.com/Energy/Energy-General/How-The-COVID-19-Plastic-Boom-Could-Save-The-Oil-Industry.html

Kollu, V. K. R.; Kumar, P.; Gautam, K. (2022). Comparison of microwave and autoclave treatment for biomedical waste disinfection. Systems Microbiology and Biomanufacturing, 2, 732–742. https://doi.org/10.1007/s43393-022-00101-y

Lechowich, R. V.; Beuchat, L. R.; Fox, K. I.; Webster, F. H. (1969). Procedure for evaluating the effects of 2450-MHz microwaves upon Streptococcus faecalis and Saccharomyces cerevisiae. Applied Microbiology, 17, 106–110. https://doi.org/10.1128/am.17.1.106-110.1969

Li, X.; Lei, B.; Lin, Z.; Huang, L.; Tan, S.; Cai, X. (2014). The utilization bamboo charcoal enhances wood plastics composites with excellent mechanical and thermal properties. Materials & Design, 53, 419–424. https://doi.org/10.1016/j.matdes.2013.07.028

Ministerio de Salud y Protección Social; Ministerio de Ambiente y Desarrollo Sostenible. (2020). Manual para la gestión integral de residuos generados en la atención en salud y otras actividades. Bogotá: MSPS-MADS.

Na, D.; Yu-Feng, Z.; Yan, W. (2008). Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition. Waste Management, 28, 1572–1580. https://doi.org/10.1016/j.wasman.2007.05.024

OECD. (2020). Colombia’s path towards OECD accession. https://www.oecd.org/colombia/colombia-accession-to-the-oecd.htm

OECD. (2021). Fostering institutional efficiency and public-governance effectiveness in Colombia as strategic enablers to sustain inclusive growth and bring Colombia closer to the OECD. https://www.oecd.org/gov/Colombia%20Strategic%20Summary%20EN.pdf

Oliveira, E. A.; Nogueira, N. G. P.; Innocentini, M. D. M.; Pisani, R. A. (2010). Microwave inactivation of Bacillus atrophaeus spores in healthcare waste. Waste Management, 30, 2327–2335. https://doi.org/10.1016/j.wasman.2010.05.002

Peng, Y.; Wu, P.; Schartup, A. T.; Zhang, Y. (2021). Plastic waste release caused by COVID-19 and its fate in the global ocean. Proceedings of the National Academy of Sciences, 118(47), e2111530118. https://doi.org/10.1073/pnas.2111530118

Park, S. S.; Seo, D. K.; Lee, S. H.; Yu, T.; Hwang, J. (2012). Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor. Journal of Analytical and Applied Pyrolysis, 97, 29–38. https://doi.org/10.1016/j.jaap.2012.06.009

Singh, N.; Tang, Y.; Zhang, Z.; Zheng, C. (2020). COVID-19 waste management: Effective and successful measures in Wuhan, China. Resources, Conservation & Recycling, 163, 105071. https://doi.org/10.1016/j.resconrec.2020.105071

Singh, N.; Ogunseitan, O.; Tang, Y. (2021). Medical waste: Current challenges and future opportunities for sustainable management. Critical Reviews in Environmental Science and Technology, 52, 2000–2022. https://doi.org/10.1080/10643389.2021.1885325

Silva, A. L.; Prata, J. C.; Walker, T. R.; Campos, D.; Duarte, A. C.; Soares, A. M. V. M.; Barceló, D.; Rocha-Santos, T. (2020). Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Science of the Total Environment, 742, 140565. https://doi.org/10.1016/j.scitotenv.2020.140565

State and Territorial Association on Alternative Treatment Technologies – STAATT. (1998). Technical Assistance Manual: State Regulatory Oversight of Medical Waste Treatment Technologies. Palo Alto, CA: EPRI.

Takata, M.; Fukushima, K.; Kawai, M.; Nagao, N.; Niwa, C.; Yoshida, T.; Toda, T. (2013). The choice of biological waste treatment method for urban areas in Japan—An environmental perspective. Renewable and Sustainable Energy Reviews, 23, 557–567. https://doi.org/10.1016/j.rser.2013.02.043

Torres, D.; Jiang, Y.; Sanchez-Monsalve, D. A.; Leeke, G. A. (2020). Hydrochloric acid removal from the thermogravimetric pyrolysis of PVC. Journal of Analytical and Applied Pyrolysis, 149, 104831. https://doi.org/10.1016/j.jaap.2020.104831

United Nations Environment Programme – UNEP. (2020). Waste management during the COVID-19 pandemic: From response to recovery. https://www.unenvironment.org/resources/report/waste-management-during-covid-19-pandemic-response-recovery

World Health Organization – WHO. (2005). Management of solid health-care waste at primary healthcare centres: A decision-making guide (1st ed.). Geneva: WHO. ISBN 9241592745.

World Health Organization – WHO. (2014). Safe management of waste from health-care activities. Geneva: WHO. https://www.who.int/publications/i/item/9789241548564

World Health Organization – WHO. (2018). Health-care waste. https://www.who.int/news-room/fact-sheets/detail/health-care-waste

World Health Organization – WHO. (2019). Overview of technologies for the treatment of infectious and sharp waste from health care facilities. Geneva: WHO. ISBN 9789241516228.

World Health Organization – WHO. (2022). Global analysis of healthcare waste in the context of COVID-19: Status, impacts and recommendations. ISBN 978-92-4-003961-2.

Zannikos, F.; Kalligeros, S.; Anastopoolos, G.; Lois, E. (2012). Converting biomass and waste plastic to solid fuel briquettes. Journal of Renewable Energy, 2013. https://doi.org/10.1155/2013/360368

Zimmermann, K. (2017). Microwave as an emerging technology for the treatment of biohazardous waste: A mini-review. Waste Management & Research, 35(5), 471–479. https://doi.org/10.1177/0734242X16684385

Zimmermann, K. (2018). Microwave technologies: An emerging tool for inactivation of biohazardous material in developing countries. Recycling, 3(3), 34. https://doi.org/10.3390/recycling3030034