Evaluación de Curcumina Empaquetada en Ácido Poliláctico-Co-Glicólico (Nano-Cur-Plga) en el Modelo Experimental de Enfermedad de Alzheimer Inducido Caenorhabditis Elegans Gmc101

Evaluation of Curcumin Packaged in Polylactic-co-glycolic acid (NANO-CUR-PLGA) in the Experimental Model of Alzheimer’s disease induced by Caenorhabditis Elegans GMC101

Contenido principal del artículo

Oriana Quintero Padilla
Paula Posada Beltrán
Marcela Gómez-Garzón
Carlos Maya-Aguirre
Roberto Suárez Ariza

Resumen

Este articulo evalúa los efectos de curcumina empaquetada en ácido poli(láctico-co-glicólico) (NANO-CUR-PLGA) en el modelo experimental de Enfermedad de Alzheimer inducido Caenorhabditis elegans GMC101. Se realizó la encapsulación de curcumina como principio activo en ácido poli(láctico-co-glicólico) (PLGA) por método químico de emulsión simple y las características fenotípicas de vida útil, movilidad, velocidad máxima y ángulos de movilidad se determinaron a través de videos del modelo invertebrado Caenorhabditis elegans GMC101, cepa mutante que sobre expresa la proteína β-amiloide, las características fueron analizadas por recuentos y las de movilidad por el programa ImageJ utilizando el pluging WrmtracK. Las NANO-CUR-PLGA producidas presentaron un tamaño de 157,4nm ± 7,3 con un promedio de 182,3nm y morfología de esferas individuales, no fusionadas, con una superficie suave. Los cambios fenotípicos de la cepa GMC101, mostraron que la NANO-CUR-PLGA extendió la vida útil de los gusanos hasta el día 14 a la concentración de 1,21µg/ml, mayor tamaño de la cepa GMC101 a la concentración de 0,60 µg/ml, aumento la velocidad máxima y ángulo de movilidad del modelo sin relación a la dosis adicionada de NANO-CUR-PLGA al medio de cultivo.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citaciones

Crossref
Scopus
Europe PMC

Referencias (VER)

Alam, J.; Dilnawaz, F.; Sahoo, S. K.; Singh, D. V.; Mukhopadhyay, A. K.; Hussain, T.; Pati, S. (2022). Curcumin encapsulated into biocompatible co-polymer PLGA nanoparticle enhanced anti-gastric cancer and anti-Helicobacter pylori effect. Asian Pacific Journal of Cancer Prevention, 23(1), 61–70. https://doi.org/10.31557/APJCP.2022.23.1.61

Alzheimer’s Association. (2023). 2023 Alzheimer’s disease facts and figures (Vol. 19). https://doi.org/10.1002/alz.13016

Bellido-Alocolea, N.; Pérez-Jiménez, M. M.; Muñoz, M. J. (2020). Identification of compounds and genes that affect neurodegenerative diseases in Caenorhabditis elegans. Biosaia, 9.

Busari, Z. A.; Dauda, K. A.; Morenikeji, O. A.; Afolayan, F.; Oyeyemi, O. T.; Meena, J.; Sahu, D.; Panda, A. K. (2017). Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles. Frontiers in Pharmacology, 8, 622. https://doi.org/10.3389/fphar.2017.00622

Cacace, R.; Sleegers, K.; Van Broeckhoven, C. (2016). Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s & Dementia, 12(6), 733–748. https://doi.org/10.1016/j.jalz.2016.01.012

Corsi, A. K.; Wightman, B.; Chalfie, M. (2015). A transparent window into biology: A primer on Caenorhabditis elegans. WormBook: The Online Review of C. elegans Biology, 1–31. https://doi.org/10.1895/wormbook.1.177.1

Coupland, C. A. C.; Hill, T.; Dening, T.; Morriss, R.; Moore, M.; Hippisley-Cox, J. (2019). Anticholinergic drug exposure and the risk of dementia: A nested case-control study. JAMA Internal Medicine, 179(8), 1084–1093. https://doi.org/10.1001/jamainternmed.2019.0677

Cuccioloni, M.; Cecarini, V.; Bonfili, L.; Pettinari, R.; Tombesi, A.; Pagliaricci, N.; Petetta, L.; Angeletti, M.; Eleuteri, A. M. (2022). Enhancing the amyloid-β anti-aggregation properties of curcumin via arene-ruthenium(II) derivatization. International Journal of Molecular Sciences, 23(15). https://doi.org/10.3390/ijms23158710

Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Le Breton, A.; Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release, 161(2), 505–522. https://doi.org/10.1016/j.jconrel.2012.01.043

Flibotte, S.; Edgley, M. L.; Chaudhry, I.; Taylor, J.; Neil, S. E.; Rogula, A.; Zapf, R.; Hirst, M.; Butterfield, Y.; Jones, S. J.; Marra, M. A.; Barstead, R. J.; Moerman, D. G. (2010). Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics, 185(2), 431–441. https://doi.org/10.1534/genetics.110.116616

Hampel, H.; Mesulam, M. M.; Cuello, A. C.; Farlow, M. R.; Giacobini, E.; Grossberg, G. T.; Khachaturian, A. S.; Vergallo, A.; Cavedo, E.; Snyder, P. J.; Khachaturian, Z. S. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 141(7), 1917–1933. https://doi.org/10.1093/brain/awy132

Hampel, H.; Vergallo, A.; Flores Aguilar, L.; Benda, N.; Broich, K.; Cuello, A. C.; Cummings, J.; Dubois, B.; Federoff, H. J.; Fiandaca, M.; Genthon, R.; Haberkamp, M.; Karran, E.; Mapstone, M.; Perry, G.; Schneider, L. S.; Welikovitch, L. A.; Woodcock, J.; Baldacci, F.; Lista, S. (2018). Precision pharmacology for Alzheimer’s disease. Pharmacological Research, 130, 331–365. https://doi.org/10.1016/j.phrs.2018.02.014

He, W.; Yuan, K.; Ji, B.; Han, Y.; Li, J. (2020). Protective effects of curcumin against neuroinflammation induced by Aβ25-35 in primary rat microglia: Modulation of HMGB1, TLR4 and RAGE expression. Annals of Translational Medicine, 8(4), 88. https://doi.org/10.21037/atm.2019.12.147

Jain, R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21(23), 2475–2490. https://doi.org/10.1016/s0142-9612(00)00115-0

Kapoor, D. N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. (2015). PLGA: A unique polymer for drug delivery. Therapeutic Delivery, 6(1), 41–58. https://doi.org/10.4155/tde.14.91

Khan, S.; Barve, K. H.; Kumar, M. S. (2020). Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Current Neuropharmacology, 18(11), 1106–1125. https://doi.org/10.2174/1570159X18666200528142429

Koopman, M.; Peter, Q.; Seinstra, R. I.; Perni, M.; Vendruscolo, M.; Dobson, C. M.; Knowles, T. P. J.; Nollen, E. A. A. (2020). Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-of-view nematode tracking platform. Nature Protocols, 15(6), 2071–2106. https://doi.org/10.1038/s41596-020-0321-9

McCall, R. L.; Sirianni, R. W. (2013). PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. Journal of Visualized Experiments, (82), 51015. https://doi.org/10.3791/51015

National Institutes of Health. (2023). ¿Cómo se trata la enfermedad de Alzheimer? https://www.nia.nih.gov/espanol/cuidado-medico-enfermedad-alzheimer/como-se-trata-enfermedad-alzheimer

Nussbaum-Krammer, C. I.; Neto, M. F.; Brielmann, R. M.; Pedersen, J. S.; Morimoto, R. I. (2015). Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. Journal of Visualized Experiments, (95), 52321. https://doi.org/10.3791/52321

Panda, A. K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. (2017). New insights into therapeutic activity and anticancer properties of curcumin. Journal of Experimental Pharmacology, 9, 31–45. https://doi.org/10.2147/JEP.S70568

Reddy, P. H.; Manczak, M.; Yin, X.; Grady, M. C.; Mitchell, A.; Tonk, S.; Kuruva, C. S.; Bhatti, J. S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J. A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A. P. (2018). Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. Journal of Alzheimer’s Disease, 61(3), 843–866. https://doi.org/10.3233/jad-170512

Ringman, J. M. (2017). Update on Alzheimer’s and the dementias: Introduction. Neurologic Clinics, 35(2), 171–174. https://doi.org/10.1016/j.ncl.2017.01.009

Romero-Vanegas, S. J.; Vargas-González, J. C.; Pardo, R.; Eslava-Schmalbach, J.; Moreno-Angarita, M. (2021). El sistema de salud colombiano y el reconocimiento de la enfermedad de Alzheimer. Revista de Salud Pública, 23(2), e400. https://doi.org/10.15446/rsap.v23n2.88369

Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C. E.; Cummings, J.; van der Flier, W. M. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

Stiernagle, T. (2006). Maintenance of C. elegans. WormBook. https://doi.org/10.1895/wormbook.1.101.1

Suárez, H. M.; Díaz Brito. (2020). Eficiencia de encapsulación y capacidad de carga de antocianinas de Vaccinium floribundum Kunt en nanopartículas de zeína. Intelligenza Artificiale, 8, 83–97.

Tagde, P.; Tagde, P.; Islam, F.; Tagde, S.; Shah, M.; Hussain, Z. D.; Rahman, M. H.; Najda, A.; Alanazi, I. S.; Germoush, M. O.; Mohamed, H. R. H.; Algandaby, M. M.; Nasrullah, M. Z.; Kot, N.; Abdel-Daim, M. M. (2021). The multifaceted role of curcumin in advanced nanocurcumin form in the treatment and management of chronic disorders. Molecules, 26(23). https://doi.org/10.3390/molecules26237109

Tang, C.; Li, L.; Shi, J.; Wu, D.; Wang, M.; Wu, Y.; Yuan, X. (2020). Curcumin in age-related diseases. Die Pharmazie, 75(11), 534–539. https://doi.org/10.1691/ph.2020.0760

Teymouri, M.; Pirro, M.; Johnston, T. P.; Sahebkar, A. (2017). Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors, 43(3), 331–346. https://doi.org/10.1002/biof.1344

Waghela, B. N.; Sharma, A.; Dhumale, S.; Pandey, S. M.; Pathak, C. (2015). Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells. PLoS ONE, 10(2), e0117526. https://doi.org/10.1371/journal.pone.0117526

Xu, J.; Du, P.; Liu, X.; Xu, X.; Ge, Y.; Zhang, C. (2023). Curcumin supplementation increases longevity and antioxidant capacity in Caenorhabditis elegans. Frontiers in Pharmacology, 14, 1195490. https://doi.org/10.3389/fphar.2023.1195490

Yang, H.; Zeng, F.; Luo, Y.; Zheng, C.; Ran, C.; Yang, J. (2022). Curcumin scaffold as a multifunctional tool for Alzheimer’s disease research. Molecules, 27(12). https://doi.org/10.3390/molecules27123879

Zendehdel, E.; Abdollahi, E.; Momtazi-Borojeni, A. A.; Korani, M.; Alavizadeh, S. H.; Sahebkar, A. (2019). The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. Journal of Cellular Biochemistry, 120(4), 4739–4757. https://doi.org/10.1002/jcb.27757

Zhang, S.; Li, F.; Zhou, T.; Wang, G.; Li, Z. (2020). Caenorhabditis elegans as a useful model for studying aging mutations. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.00637

Zhang, X. X.; Tian, Y.; Wang, Z. T.; Ma, Y. H.; Tan, L.; Yu, J. T. (2021). The epidemiology of Alzheimer’s disease: Modifiable risk factors and prevention. The Journal of Prevention of Alzheimer’s Disease, 8(3), 313–321. https://doi.org/10.14283/jpad.2021.15

Zhen, M.; Samuel, A. D. T. (2015). C. elegans locomotion: Small circuits, complex functions. Current Opinion in Neurobiology, 33, 117–126. https://doi.org/10.1016/j.conb.2015.03.009

Zhou, Z.; Sun, T.; Jiang, C. (2021). Recent advances on drug delivery nanocarriers for cerebral disorders. Biomedical Materials, 16(2), 24104. https://doi.org/10.1088/1748-605X/abdc97