Dynamic Feedback Control And State Observers For A Knee Rehabilitation Device Using Soft Action

Dynamic Feedback Control And State Observers For A Knee Rehabilitation Device Using Soft Action

Contenido principal del artículo

Andres Felipe Guatibonza Artunduaga
Leonardo Enrique Solaque Guzmán
Alexandra Velasco Vivas


Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances.


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Andres Felipe Guatibonza Artunduaga, Universidad Militar Nueva Granada

Ingeniero en Mecatronica de la Universidad Militar Nueva Granada en Bogota - Colombia, trabajo como auxiliar de investigacion en la Universidad Militar Nueva Granada, departamento de ingenieria, en la linea de investigacion de robotica y control enfocada a sistemas de rehabilitacion

Leonardo Enrique Solaque Guzmán, Universidad Militar Nueva Granada

Ingeniero electrónico de la Universidad de Antioquia - Colombia. Estudió el máster en Ingeniería Eléctrica en la Universidad de los Andrés - Colombia. Obtuvo el Ph.D. en Control Automático en 2007 de LAAS-CNRS e INSA de Toulouse - Francia. Sus principales áreas de investigación son: sistema de control, robótica, planificación y seguimiento de rutas, sistema de filtro y fusión sensorial.
Actualmente es profesor asociado en el Departamento de Mecatrónica de la Universidad Militar Nueva Granada, Bogotá.

Alexandra Velasco Vivas, Universidad Militar Nueva Granada

Ingeniera electrónica y máster en ingeniería electrónica de la Universidad Javeriana. Obtuvo el Ph.D. en Robótica, Automatización y Bioingeniería en 2015 de la Universidad de Pisa. Sus principales áreas de investigación están en Control y Robótica enfocadas en sistemas de rehabilitación, planificación de trayectoria y optimización.
Actualmente es profesora asistente en el Departamento de Mecatrónica de la Universidad Militar Nueva Granada, Bogotá.

Referencias (VER)

Allen, M., Zhong, Q., Kirsch, N., Dani, A., Clark, W. W.& Sharma, N. (2017), ‘A nonlinear dynamics-based estimator for functional electrical stimulation: Preliminary results from lower-leg extension experiments’, IEEE Trans-actions on Neural Systems and Rehabilitation Engineering25(12), 2365–2374.

Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M. H.& Brahmi, A. (2018), ‘Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control’, IEEE/ASME Transactions onMechatronics23(2), 575–585.

Della-Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M. G., Garabini, M. & Bicchi, A. (2017), ‘Controlling soft robots: Balancing feedback and feedforward elements’, IEEE Robot. Automat. Mag.24(3), 75–83.URL: https://doi.org/10.1109/MRA.2016.2636360.

Erwin, A. & O’Malley, M. K. (2017), A novel exoskeleton for assessing passive wrist stiffness and active range of motion, in ‘2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob)’, pp. 1–1.

Expo, M.(n.d.), ‘Rehabilitation exoskeletons’, http://www.medicalexpo.es/fabricante-medical/exoesqueleto-rehabilitacion-10025.html. [Online; accessed 10-Aug-2019].

Guatibonza, A., Solaque, L. & Velasco, A. (2018), Kinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitation, in ‘Proceedings ETCM’.

Guo, S., Zhao, F., Wei, W., Guo, J., Zhao, X. & Zhang, W. (2015), Soft actuator for hand rehabilitation, in ‘2015 IEEE International Conference on Mechatronics and Automation (ICMA)’, pp. 2197–2202.

Htoon, Z. L., Sidek, S. N., Fatai, S. & Rashid, M. M. (2016), Estimation of upper limb impedance parameters using recursive least square estimator, in ‘2016 International Conference on Computer and Communication Engineering (ICCCE)’, pp. 144–148.

Huo, W., Mohammed, S., Moreno, J. C. & Amirat, Y. (2016), ‘Lower limb wearable robots for assistance and rehabilitation: A state of the art’, IEEE Systems Journal10(3), 1068–1081.

Jujjavarapu, S. S. & Esfahani, E. T. (2019), Improving stability in upper limb rehabilitation using variable stiffness, in ‘2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)’, pp. 122–125.

Koller-Hodac, A., Leonardo, D., Walpen, S. & Felder, D. (2010), A novel robotic device for knee rehabilitation improved physical therapy through automated process, in ‘2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics’, pp. 820–824.

Lemerle, S., Fukushima, S., Saito, Y., Nozaki, T. & Ohnishi, K. (2017), Wearable finger exoskeleton using flexible actuator for rehabilitation, in ‘2017 IEEE International Conference on Mechatronics (ICM)’, pp. 244–249.

Lessard, S., Pansodtee, P., Robbins, A., Trombadore, J. M., Kurniawan, S. & Teodorescu, M. (2018), ‘A soft exosuit for flexible upper-extremity rehabilitation’, IEEE Transactions on Neural Systems and Rehabilitation Engineering26(8), 1604–1617.

Luenberger, D. G. (1971), “an introduction to observers.”, IEEE Transactions on Automatic Control. 16(6), pp. 596–602.

Luo, L., Peng, L., Hou, Z. & Wang, W. (2017), An adaptive impedance controller for upper limb rehabilitation based on estimation of patients’ stiffness, in ‘2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)’, pp. 532–537.

Ma, X., Yang, Q., Cai, J., Sun, M. & Song, J. (2016), Design and research of 7 - dof upper-limb rehabilitation robot flexible joint, in ‘2016 International Conference on Advanced Robotics and Mechatronics (ICARM)’, pp. 614–619.

National Institute of Biomedical Imaging, N.I. & Bioengineering (n.d.), ‘Ingeniería de Rehabilitación’, https://www.nibib.nih.gov/espanol/temas-cientificos/ingenier%C3%ADa-de-rehabilitaci%C3%B3n. [Online; accessed 10-Aug-2019].

Ogata, K. (1996), Discrete Time Control Systems, PearsonEducation.URL: https://books.google.com.co/books?id=aYFUs17m0YQC

Ogata, K. (2010), Modern Control Engineering, Pearson Education.

Parivash, F. & Bamdad, M. (2015), Independent position-stiffness control for elbow rehabilitation robot with cable-based series elastic actuator, in ‘2015 22nd Iranian Conference on Biomedical Engineering (ICBME)’, pp. 346–351.

Polytechnique fédérale de Lausanne, E. (n.d.), ‘Soft actuator packs for human augmentation’, https://www.epfl.ch/labs/rrl/research-2/research-soft/page-148992-en-html/. [Online; accessed 10-Aug-2019].

Qb robotics. (n.d.), ‘Qbmove advanced’, https://qbrobotics.com/products/qbmove-advanced/. [Online; accessed 06-Aug-2019].

Solaque, L. & Velasco, A. (2019), Control strategy for a soft actuated knee rehabilitation device, in ‘Proceedings of ICMRE’.

Umivale, P. S. (2011), ‘Patología de la rodilla: Guía de manejo clínico’.

Wu, Q., Wang, X., Chen, B. & Wu, H. (2018), ‘Design and fuzzy sliding mode admittance control of a soft wear-able exoskeleton for elbow rehabilitation’, IEEE Access 6, 60249–60263.