Structural and Microstructural Properties of Systems Based on Bi0.5Na0.5TiO3

Structural and Microstructural Properties of Systems Based on Bi0.5Na0.5TiO3

Contenido principal del artículo

Marcela Revelo Castro
Sonia Gaona Jurado
Claudia Fernanda Villaquiran Raigoza


Perovskites based on bismuth sodium titanates, Bi0.5Na0.5TiO3 (BNT), are incorporated into lead-free piezoelectric materials. Although BNT was discovered five decades ago, many aspects such as the structural complexity and the modifications produced when it is combined with other perovskites are not clearly understood. We studied the structural and microstructural properties of BNT upon addition of BaTiO3 (BT) and SrTiO3 (ST) during sol-gel synthesis. We characterized the ceramic powders by infrared and Raman spectroscopy, X-ray diffraction and scanning electronic microscopy. The addition of BT/ST modified the bonds, generating coexistence and phase transition and confirmed the existence of a morphotropic phase boundary. 


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Marcela Revelo Castro, Universidad del Cauca

Departamento de Química

Sonia Gaona Jurado, Universidad del Cauca

Profesora Titular, Departamento de Física

Claudia Fernanda Villaquiran Raigoza, Universidad del Cauca

Profesora Titular, Departamento de Física

Referencias (VER)

G. A. Smolenskii, A. I. Isupov, A: I. Agranovskaya, N. N. Krainik, New ferroelectrics of complex composition, Soviet Physics–Solid State, 2 (1961) 2651-2654.

B. Parija, T. Badapanda, S. Panigrahi, T. P. Sinha, Ferroelectric and piezoelectric propieties of (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics, J. Mater. Sci. Mater. Electron. 24 (2013) 402-410. doi: 10.1007/s10854-012-0764-z

M. C. Perez, Láminas delgadas de (Bi0.5Na0.5)1-xBaxTiO3 en torno a la frontera de fase morfotrópica preparadas por métodos de depósito químico y fotoquímico de disoluciones, Tesis doctoral, Universidad de Navarra, España, 2016.

R. Machado, B. Valdeci, D. A. Ochoa, E. Cerdeiras, L. Mestres, J. E. García, Elastic, dielectric and electromechanical properties of (Bi0.5Na0.5)TiO3-BaTiO3 piezoceramics at the morphotropic phase boundary region, J. Alloys Compd. 690 (2017) 568-574.

Lee, J.-K.; Hong, K. S.; Kim, C. K.; Park, S.-E. (2002): Phase transitions and dielectric properties in A-site ion substituted (Na1/2Bi1/2)TiO3 ceramics (A=Pb and Sr), Journal of Applied Physics, 91(7): 4538-4542. doi: 10.1016/j.jallcom.2016.08.116.

Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperatura of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics, Appl. Phys. Lett. 92 (2008) 262904. doi: 10.1063/1.2955533.

W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective, J. Electroceramics, 29 (2012) 71-93. doi: 10.1007/s10832-012-9742-3.

C. J. Brinker, G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic, Inc., New York, 1990.

L. A. Palacios-Santos, Métodos de síntesis de nuevos materiales basados en metales de transición, Revista Facultad de Ingeniería, 32 (2004) 51-61.

M.Wojdyr, Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr. 43 (2010) 1126-1128. doi: 10.1107/S0021889810030499.

H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M. A. Hentatti, H. Khemakhem, XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3−xBaTiO3 lead free ceramics, J. Alloys Compd. 618 (2015) 643-648. doi: 10.1016/j.jallcom.2014.08.161.

I. G. Siny, E. Husson, J. M. Beny, S. G. Lushnikov, E. A. Rogacheva, P. P. Syrnikov, Raman scattering in the relaxor-type ferroelectric Na1/2Bi1/2TiO3, Ferroelectrics, 248 (2000) 57-78. doi: 10.1080/00150190008223669.

S. Trujillo, J. Kreisel, Q. Jiang, J. H. Smith, P. A. Thomas, P. Bouvier, F. Weiss, The high-pressure behavior of Ba-doped Na1/2Bi1/2TiO3 investigated by Raman spectroscopy, J. Phys. Condens. Matter. 17 (2005) 6587-6597. doi: 10.1088/0953-8984/17/41/027.

M. Zannen, A. Lahmar, M. Dietze, H. Khemakhem, A. Kabadou, M. Es-Souni, Structural, optical, and electrical properties of Nd-doped Na0.5Bi0.5TiO3, Mater. Chem. Phys. 134 (2012) 829–833. doi: 10.1016/j.matchemphys.2012.03.076.

R. Selvamani, G. Singh, V. Sathe, V. S. Tiwari, P. K. Gupta, Dielectric, structural and Raman studies on (Na0.5Bi0.5TiO3)(1−x)(BiCrO3)x ceramic, J. Phys.: Condens. Matter. 23 (2011) 55901. doi: 10.1088/0953-8984/23/5/055901.

J. Suchanicz, I. Jankowska-Sumara, T. V. Kruzina, Raman and infrared spectroscopy of Na0.5Bi0.5TiO3-BaTiO3 ceramics, J. Electroceram. 27 (2011) 45-50. doi: 10.1007/s10832-011-9648-5.

E. Buixaderas, S. Kamba, J. Petzelt, J. Drahokoupil, F. Laufek, M. Kosec, Dielectric anisotropy in relaxor ferroelectric Pb0.775La0.15(Zr0.4Ti0.6)O3 ceramics, Appl. Phys. Lett. 91 (2007) 112909. doi: 10.1063/1.2783962.

D. Rout, V. Subramanian, K. Hariharan, V. R. K. Murthy, V.

Sivasubramanian, Raman spectroscopic study of (Pb1-xBax)(Yb1/2Ta1/2)O3 ceramics, J. Appl. Phys. 98 (2005)103503-103503-6. doi: 10.1063/1.2131188.

J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, V. Abello, G. Lucazeau, An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1−xKx)0.5Bi0.5TiO3 (0 x 1) solid solution, J. Phys.: Condens. Matter. 12 (2000) 3267-3280. doi: 10.1088/0953-8984/12/14/305.

J. Shi, H. Fan, X. Liu, A. Bell, Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3 Solid Solutions, J. Am. Ceram. Soc. 97 (2014) 848-853. doi: 10.1111/jace.12712.

S. Kim, H. Choi, S. Han, J. S. Park, M. H. Lee, T. K. Song, M.-H. Kim, D. Do, W.-J. Kim, A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1-x)(Bi0.5Na0.5)TiO3–xSrTiO3 piezoelectrics, J. Am. Ceram. Soc. 37(4) (2017) 1379–1386. doi:10.1016/j.jeurceramsoc.2016.11.023

B. Parija, S. K. Rout, L. S. Cavalcante, A. Z. Simões, S.·Panigrahi, E. Longo, N. C. Batista, Structure, microstructure and dielectric properties of 100-x(Bi0.5Na0.5)TiO3 −x[SrTiO3] composites ceramics, Appl. Phys. A. 109 (2012) 715-723. doi: 10.1007/s00339-012-7105-1.

G. O. Jones, P. A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Cryst. B. 58 (2002) 168-178. doi: 10.1107/S0108768101020845.

A. S. Bhalla, R. Guo, R. Roy, The perovskite structure-a review of its role in ceramic science and technology, Mater. Res. Innov. 4 (2000) 3-26. doi: 10.1007/s100190000062.