Approach for profiling warehousing activity using customer's order data history.

Laura Osorio Sierra, Juan José Suárez Estrada, Jose Alejandro Montoya, Juan Gregorio Arrieta Posada

Resumen


In a supply chain, the warehousing process represents a significant percentage of the total logistics costs. Making objective decisions in this activity plays an important role because they are translated into improvement of the process or into making the process cost-effective. Therefore, before making decisions, it is necessary to provide a systematic analysis and a statistical measurement of the process. In this study, we present an approach for profiling the warehousing activity based on the customer's order history. This approach is a quantitative analysis for characterizing the warehousing activity according to the number of lines per order and the affinity in a set of orders. For estimating the order affinity, we present a novel procedure. The result of this approach are clusters that identify the different profiles of orders in the warehousing activity. Finally, we present a numerical case of study to illustrate the application of the presented approach.

Palabras clave


Approach for profiling; Warehousing activity profiling; Customer’s order data; Order affinity

Texto completo:

PDF (English)

Referencias


Accorsi, R., Manzini, R. and Maranesi, F. (2014) ‘A decision-support system for the design and management of warehousing systems’, Computers in Industry. Elsevier, 65(1), pp. 175–186.

Agrawal, R., Imieliński, T. and Swami, A. (1993) ‘Mining association rules between sets of items in large databases’, in Acm sigmod record, pp. 207–216.

Andres, B. (ed.) (2018) Encuesta Nacional Logística 2018. Available at: https://onl.dnp.gov.co/es/Publicaciones/SiteAssets/Paginas/Forms/AllItems/Informe de resultados Encuesta Nacional Logística 2018.pdf.

Baker, P. and Canessa, M. (2009) ‘Warehouse design: A structured approach’, European Journal of Operational Research. Elsevier, 193(2), pp. 425–436.

Bartholdi, J. J. and Hackman, S. T. (2008) Warehouse & Distribution Science: Release 0.89. Supply Chain and Logistics Institute.

Chackelson, C., Errasti, A. and Tanco, M. (2011) ‘A World Class Order Picking Methodology: An Empirical Validation’, in IFIP International Conference on Advances in Production Management Systems, pp. 27–36.

Chen, M.-C. et al. (2005) ‘Aggregation of orders in distribution centers using data mining’, Expert Systems with Applications. Elsevier, 28(3), pp. 453–460.

Chuang, Y.-F., Lee, H.-T. and Lai, Y.-C. (2012) ‘Item-associated cluster assignment model on storage allocation problems’, Computers & industrial engineering. Elsevier, 63(4), pp. 1171–1177.

Errasti, A. et al. (2011) ‘Diseño de un sistema de picking producto a operario. Aplicación del diseño de experimentos mediante simulación de eventos discretos.’, Dyna, 86(5), pp. 515–522.

Frazelle, E. (2002a) Supply Chain Strategy : The Logistics of Supply Chain Management, The McGraw-Hill Companies. doi: 10.1036/0071418172.

Frazelle, E. (2002b) World-Class Warehousing and Material Handling, New York. Edited by McGraw-Hill. McGraw-Hill.

Van Gils, T. et al. (2018) ‘Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review’, European Journal of Operational Research. Elsevier, 267(1), pp. 1–15.

Goetschalckx, M. and Ashayeri, J. (1989) ‘Classification and design of order picking’, Logistics World. MCB UP Ltd, 2(2), pp. 99–106.

Han, J., Pei, J. and Kamber, M. (2011) Data mining: concepts and techniques. Elsevier.

Hsieh, L. and Tsai, L. (2006) ‘The optimum design of a warehouse system on order picking efficiency’, The International Journal of Advanced Manufacturing Technology. Springer, 28(5–6), pp. 626–637.

De Koster, R., Le-Duc, T. and Roodbergen, K. J. (2007) ‘Design and control of warehouse order picking: A literature review’, European journal of operational research. Elsevier, 182(2), pp. 481–501.

Park, B. C. (2011) ‘Order Picking Performance’, 대한산업공학회지, 37(4), pp. 271–278.

Rouwenhorst, B. et al. (2000) ‘Warehouse design and control: Framework and literature review’, European Journal of Operational Research. Elsevier, 122(3), pp. 515–533.

SPSS (2001) The SPSS TwoStep Cluster Component A scalable component enabling more efficient customer segmentation.

Yener, F. and Yazgan, H. R. (2019) ‘Optimal warehouse design: Literature review and case study application’, Computers & Industrial Engineering. Elsevier, 129, pp. 1–13.




DOI: https://doi.org/10.24050/reia.v17i33.1348

Métricas de artículo

Vistas de resumen
60




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2020 Revista EIA

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |