Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals

Efecto de la adición de Co sobre las propiedades de la microestructura y la morfología de TIO2: óxido multicomponente de metales de transición

Contenido principal del artículo

Heiddy Paola Quiroz Gaitán
Andrés Jhovanny Bohórquez
Anderson Dussan Cuenca


This work presents the process of fabrication and characterization of cobalt-doped titanium dioxide thin films on soda-lime glass substrates useful in spintronic applications. The samples were fabricated via the DC Sputtering technique, under the magnetron configuration. The samples were submitted of annealing at atmospheric pressure, after deposit process. Annealing process affect the structural properties of thin films, evidencing the formation of the Co3O4 with spinel structure. XPS measurements corroborated the presence of cobalt oxide species with a spinel-like arrangement. Morphological characterization showed an overall granular nature of the fabricated samples, which varied depending on the deposition time and annealing process. PPMS measurements revealed a ferromagnetic behavior of the thin films at room temperature.


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Heiddy Paola Quiroz Gaitán, Universidad Nacional de Colombia

Departamento de Física de la Universidad Nacional de Colombia Sede Bogotá

Referencias (VER)

Charlton, G.; Howes, P.; Muryn, C.; Raza, H.; Jones, N.; Taylor, J.; Norris, C.; McGrath, R.; Norman, D.; Turner, T.; Thornton, G. (2000). Copper interface induced relaxation of TiO2 (110)−1×1. Physical Review B, 61, pp. 16117. [Online] Disponible en: 10.1103/PhysRevB.61.16117 [Consultado 19 de julio de 2019].

Diebold, U.; Tao, H. S.; Shinn, N. D.; Madey, T. E. (1994). Electronic structure of ultrathin Fe films on TiO2(110) studied with soft-x-ray photoelectron spectroscopy and resonant photoemission. Physical Review B: Condensed Matter, 50, pp. 14474. [Online] Disponible en: 10.1103/physrevb.50.14474 [Consultado 19 de julio de 2019].

Shao, Y.; Chen, W.; Wold, E.; Pau, J. (1994). Dispersion and electronic structure of titania-supported cobalt and cobalt oxide, Langmuir, 10, pp. 178-187. [Online] Disponible en: https://doi.org/10.1021/la00013a027 [Consultado 19 de julio de 2019].

Huang, C.; Guo, Y.; Liu, X.; Wang, Y. (2006). Structural and optical properties of Ti1-xCoxO2 films prepared by sol-gel spin coating. Thin Solid Films, 505 (1-2), pp. 141-144. [Online] Disponible en: https://doi.org/10.1016/j.tsf.2005.10.021 [Consultado 19 de julio de 2019].

Xue, Y.; Wang, H. M. (2005). Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy. Applied Surface Science, 243 (1-4), 278-286. [Online] Disponible en: https://doi.org/10.1016/j.apsusc.2004.09.073 [Consultado 19 de julio de 2019].

Megusar, J.; Meier, G. H.; (1976). Internal Oxidation of Dilute Co-Ti Alloys. Metallurgical Transactions A, 7, pp. 1133-1140. [Online] Disponible en: https://doi.org/10.1007/BF02656595 [Consultado 19 de julio de 2019].

Yankin, A.; Vikhreva, O.; Balakirev, V. (1999). P–T–x diagram of the Co–Ti–O system. Journal of Physics and Chemistry of Solids, 60 (1), pp. 139-143. [Online] Disponible en: https://doi.org/10.1016/S0022-3697(98)00058-4 [Consultado 19 de julio de 2019].

Brezny, Bohuslav; Muan, Arnulf. (1969). Phase Relations and Stabilities Of Compounds In The System CoO-TiO2*. Journal of Inorganic and Nuclear Chemistry, 3, pp. 649-655. [Online] Disponible en: https://doi.org/10.1016/0022-1902(69)80009-6 [Consultado 19 de julio de 2019].

Rout, S.; Popovici, N.; Dalui, S.; Paramês, M.; da Silva, R. (2013). Phase growth control in low temperature PLD Co:TiO2 films by pressure. Current Applied Physics, 13, pp. 670-676. [Online] Disponible en: 10.1016/j.cap.2012.11.005 [Consultado 19 de julio de 2019].

Earnshaw, A.; Greenwood, N. (1997). Chemistry of the Elements. Oxford Butterworth-Heinmann, pp. 961.

Lee, Jeong-Min; Kim, Ju Wan; Lim, Ji Sun; Kim, Tae Jin; Kim, Shin Dong; Park, Soo-Jin; Lee, Young-Seak. (2007). X-ray Photoelectron Spectroscopy Study of Cobalt Supported Multi-walled Carbon Nanotubes Prepared by Different Precursors. Carbon Science 8 (2), pp. 120-126. [Online] Disponible en: 10.5714/CL.2007.8.2.120 [Consultado 19 de julio de 2019].

Cabrera-German, Dagoberto; Gomez-Sosa, Gustavo; Herrera-Gomez, Alberto. (2016). Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al K α radiation: I: cobalt spinel. Surface and Interface Analysis, 48, pp. 252-256. [Online] Disponible en: https://doi.org/10.1002/sia.5933 [Consultado 19 de julio de 2019].

Galhenage, Randima P.; Yan, Hui; Tenney, Samuel A.; Park, Nayoung; Henkelman, Graeme; Albrecht, Peter; Mullins, David R.; Chen, Donna A. (2013). Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt. Journal of Physical Chemistry C, 117 (34), pp. 7191-7201. [Online] Disponible en: https://doi.org/10.1021/jp401283k [Consultado 19 de julio de 2019].

Albella, J. M. (2003). Láminas Delgadas y Recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid. Consejo Superior de Investigaciones Científicas, pp. 120.

Tomou, A.; Gournis, D.; Panagiotopoulos, I.; Huang, Y.; Hadjipanayis, G. C.; Kooi, B. J. (2006). Weak ferromagnetism and exchange biasing in cobalt oxide nanoparticle systems. Journal of Applied Physics, 9, pp. 123915. [Online] Disponible en: https://doi.org/10.1063/1.2207809 [Consultado 19 de julio de 2019].

Artículos similares

También puede {advancedSearchLink} para este artículo.