Propiedades físicas de nanoestructuras de GaSb para aplicaciones en espintrónica

Heiddy Paola Quiroz Gaitán, Norma Diana Sarmiento Cruz, Ismael Fernando Rodriguez, Anderson Dussan Cuenca, Ximena Audrey Velasquez Moya

Resumen


En este trabajo se fabricaron películas delgadas nanoestructuradas de GaSb por el método de pulverización catódica asistidas por campo magnético sobre sustratos de vidrio e ITO. Se realizaron procesos de recocido posterior a la preparación y bajo condiciones de alto vacío que evitaran la incorporación  de átomos de oxígeno presentes en la atmósfera. A partir de medidas de difracción de rayos X se pudo establecer una estructura tipo blenda de Zinc y fases de InO asociadas al sustrato ITO. Los procesos de recocido permitieron evidenciar una mejora significativa en la cristalinidad del material siendo éste menos amorfo cuando la temperatura de recocido (Tr) fue de 673 K. Un valor de la brecha de energía prohibida variando entre 0.75 y 0.85 eV fue obtenido en muestras de GaSb cuando la Tr cambió entre 300 K y 673 K, respectivamente.  Medidas de microscopia electrónica de barrido y fuerza atómica permitieron obtener información de la morfología en la superficie del material.


Palabras clave


Pulverización catódica; blenda de Zinc; nanoestructuras, espintrónicos; películas delgadas

Texto completo:

PDF

Referencias


Mosher, D.M.; Soukup, R.J. (1982). The fabrication of both n-type and p-type GaAs thin films deposited by troide sputtering. Thin films, 98(3), pp. 215-228. [Online] Disponible en: https://doi.org/10.1016/0040-6090(82)90404-7 [Consultado 26 de septiembre de 2017].

Hongwei, Z.; Yiping, Z.; Jianrong, D.; Zhanping, Z.; Liang, P.; Meiying, K. (1998). Growth and transport properties of InAs thin films on GaAs. Journal of Crystal Growth, 191(3). pp. 361-364. [Online] Disponible en: https://doi.org/10.1016/S0022-0248(98)00161-4 [Consultado 26 de septiembre de 2017].

Carroll, J.A.; Spivak, J.F. (1966). Preparation of high mobility InSb thin films. Solid-State Electronics, 9(5), pp. 383-384. [Online] Disponible en: 10.1016/0038-1101(66)90152-3 [Consultado 26 de septiembre de 2017].

Bonilla-Marin, Jose Lauro. (2007). Obtención y caracterización del semiconductor poroso antimonio de galio con impurezas de telurio, tesis (Maestro en Tecnología Avanzada), Santiago de Queretaro, Instituto Politécnico Nacional, 71 pp. Disponible en: http://tesis.ipn.mx/bitstream/handle/123456789/1093/2321_2007_CICATA-QUERETARO_MAESTRIA_bonilla_marin_joselauro.pdf?sequence=1&isAllowed=y [Consultado 26 de septiembre de 2017].

Kluth, S. M.; Jojannessen, B.; Kluth, P.; Glover, C. J.; Foran, G. J.; Ridway, M. C. (2005). EXAFS comparison of crystalline/continuous and amorphous/porous GaSb. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 238(1-4), pp. 264-267. [Online] Disponible en: https://doi.org/10.1016/j.nimb.2005.06.060 [Consultado 26 de septiembre de 2017].

Glemza, Justinas; Pralgauskaite, Sandra; Palenskis, Vilius; Matukas, Jonas. (2017). Low frequency noise investigation of 2–3 μm GaSb-based laser diodes. Solid-State Electronics, 133, pp. 70-77. [Online] Disponible en: https://doi.org/10.1016/j.sse.2017.05.002 [Consultado 26 de septiembre de 2017].

Benyettou, F.; Aissat, A.; Benamar, M.A.; Vilcot, J.P. (2015). Modeling and Simulation of GaSb/GaAs Quantum Dot for Solar Cell. Energy Procedia, 74, pp. 139-147. [Online] Disponible en: https://doi.org/10.1016/j.egypro.2015.07.535 [Consultado 26 de septiembre de 2017].

Ohno, H.; Shen, A.; Matsukura, F.; Oiwa, A.; Endo, A.; Katsumoto, S.; Iye, Y. (1996). (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Applied Physics Letters, 69(3), pp. 363-365. [Online] Disponible en: http://dx.doi.org/10.1063/1.118061 [Consultado 26 de septiembre de 2017].

Adhikari, T.; Basu, S. (1996). Carrier-induced ferromagnetic ordering in Ga1−xMnxSb, a new III-Mn-V semimagnetic semiconductor. Journal of Magnetism and Magnetic Materials, 161, pp. 282-286. [Online] Disponible en: https://doi.org/10.1016/S0304-8853(95)01281-8 [Consultado 26 de septiembre de 2017].

Papaj, M.; Kobak, J.; Rousset, J.G.; Janik, E.; Nawrocki, M.; Kossacki, P.; Golnik, A.; Pacuski, W. (2014). Photoluminescence studies of giant Zeeman effect in MBE-grown cobalt-based dilute magnetic semiconductors. Journal of Crystal Growth, 401, pp. 644-647. [Online] Disponible en: https://doi.org/10.1016/j.jcrysgro.2014.01.077 [Consultado 26 de septiembre de 2017].

Rout, S.; Popovici, N.; Daluia, S.; Paramês, M.L.; da Silva, R.C.; Silvestre, A.J.; Conde, O. (2013). Phase growth control in low temperature PLD Co: TiO2 films by pressure. Current Applied Physics, 13(4), pp. 670-676. [Online] Disponible en: https://doi.org/10.1016/j.cap.2012.11.005 [Consultado 26 de septiembre de 2017].

Calderón, Jorge A.; Quiroz, Heiddy P.; Dussan, A. (2017). Optical and structural properties of GaSb doped Mn based diluted magnetic semiconductor thin films grown via DC magnetron sputtering. Advanced Materials Letters, 8(5), pp. 650-655 [Online] Disponible en: 10.5185/amlett.2017.7110 [Consultado 26 de septiembre de 2017].

Pärna, R.; Joost, U.; Nõmmiste, E.; Käämbre, T.; Kikas, A.; Kuusik, I.; Hirsimäki, M.; Kink, I.; Kisand, V. (2011). Effect of cobalt doping and annealing on properties of titania thin films prepared by sol–gel process. Applied Surface Science, 257, pp. 6897–6907. [Online] Disponible en: https://doi.org/10.1016/j.apsusc.2011.03.026 [Consultado 26 de septiembre de 2017].

Calderón, Jorge A.; Mesa, F.; Dussan A. (2017). Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys. Applied Surface Science, 396, pp. 1113-1118. [Online] Disponible en: https://doi.org/10.1016/j.apsusc.2016.11.096 [Consultado 26 de septiembre de 2017].

Quiroz, Heiddy P. (2014). Preparación y Estudio de las Propiedades Estructurales, Ópticas y Morfológicas de Nanotubos de TiO2 para su Aplicación en Sensores Ópticos Tesis (Maestría en Ciencias - Física) Bogotá, Universidad Nacional de Colombia, 103 pp. Disponible en: http://www.bdigital.unal.edu.co/47304/1/1072655319.2014.pdf [Consultado 26 de septiembre de 2017].

Wasa, K.; Kitabatake, M.; Adachi, H. (2004). Thin Film Materials Technology Sputtering of Compound Materials, Springer, pp. 33.




DOI: https://doi.org/10.24050/reia.v16i31.1272

Métricas de artículo

Vistas de resumen
84




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 Revista EIA

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.




 

 

 

 

 

UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |