Programación o planeación de actividades o recursos en la agricultura. Una revisión de literatura

Vanesa Ramírez Valencia, Diana María Cárdenas Aguirre, Santiago Ruiz Herrera

Resumen


Con el propósito de detectar las herramientas y enfoques desarrollados en la programación de recursos o la planeación de actividades en la agricultura, el presente documento muestra la revisión sistemática de literatura adelantada para tal fin, así mismo, expone los resultados y discusión de ellos. Se pretende realizar un diagnóstico del desarrollo de este sector y como está siendo impactado por diferentes herramientas de optimización, que en su mayoría han sido aplicadas en la industria. El documento muestra una introducción general, las ecuaciones de búsqueda utilizadas, las bases de datos en las que fueron aplicadas las ecuaciones de búsqueda, los resultados de la revisión sistemática de literatura y la discusión de los resultados obtenidos.  


Palabras clave


Programación, Planeación, Agricultura, Actividades, Recursos, Operación.

Texto completo:

PDF

Referencias


Alaiso, S.; Backman, J.; Visala, A. (2013). Ant Colony Optimization for Scheduling

of Agricultural Contracting Work. IFAC Proceedings Volumes, 46(18), pp. 133-137. [Online] Disponible en: http://dx.doi.org/10.3182/20130828-2-SF-3019.00041 [Consultado 30 de Marzo de 2017]

Ali, O.; Verlinden, B.; Van Oudheusden, D. (2008). Infield logistics planning for crop-harvesting operations. Engineering Optimization, 41(2), pp. 183-197. [Online] Disponible en: http://dx.doi.org/10.1080/03052150802406540 [Consultado 31 de Marzo de 2017]

Arnaout, J. P. M.; Maatouk, M. (2010). Optimization of quality and operational costs through improved scheduling of harvest operations. International Transactions in Operational Research, 17(5), pp. 595-605. [Online] Disponible en: http://dx.doi.org/10.1111/j.1475-3995.2009.00740.x [Consultado 30 de Marzo de 2017]

Baio, F. H.; Rodrigues, A. D.; Santos, G. S. D.; Silva, S. P. D. (2013). Mathematical modeling to select mechanized agricultural systems by the lowest operational cost. Engenharia Agrícola, 33(2), pp. 402-410. [Online] Disponible en: http://dx.doi.org/10.1590/S0100-69162013000200018 [Consultado 30 de Marzo de 2017]

Bakhtiari, A.; Navid, H.; Mehri, J.; Berruto, R.; Bochtis, D. D. (2013). Operations planning for agricultural harvesters using ant colony optimization. Spanish Journal of Agricultural Research, 11(3), pp. 652-660. [Online] Disponible en: http://dx.doi.org/10.5424/sjar/2013113-3865 [Consultado 30 de Marzo de 2017]

Banhara, J. R.; Rodriguez, L. C. E.; Seixas, F.; Moreira, J. M. M.; da Silva, L. M. S.; Nobre, S. R.; Cogswell, A. (2010). Optimized harvest scheduling in eucalyptus plantations under operational, spatial and climatic constraints. Scientia Forestalis, 38(85), pp. 85-95. [Online] Disponible en: https://www.scopus.com/inward/record [Consultado 29 de Marzo de 2017]

Beaudoin, D., Frayret, J., y Lebel, L. (2014) Hierarchical forest management with anticipation: an application to tactical–operational planning integration. Canadian Journal of Forest Research, 38(8), pp. 2198-221. [Online] Disponible en: https://doi.org/10.1139/X08-055 [Consultado 29 de Marzo de 2017]

Berruto, R.; Busato, P. (2008). System approach to biomass harvest operations: simulation modeling and linear programming for logistic design. InASABE Annual International Meeting, Rhode Island, Paper (No. 084565). [Online] Disponible en: https://www.scopus.com/inward/record [Consultado 29 de Marzo de 2017]

Bochtis, D. D.; Dogoulis, P.; Busato, P.; Sørensen, C. G.; Berruto, R.; Gemtos, T. (2013). A flow-shop problem formulation of biomass handling operations scheduling. Computers and electronics in agriculture, 91, pp. 49-56. [Online] Disponible en: https://doi.org/10.1016/j.compag.2012.11.015 [Consultado 30 de Marzo de 2017]

Bochtis, D.; Griepentrog, H. W.; Vougioukas, S.; Busato, P.; Berruto, R.; y Zhou, K. (2015). Route planning for orchard operations. Computers and Electronics in Agriculture, 113, pp. 51-60. [Online] Disponible en: https://doi.org/10.1016/j.compag.2014.12.024 [Consultado 30 de Marzo de 2017]

Bochtis, D. D.; Sørensen, C. G.; Jørgensen, R. N.; Green, O. (2009). Modelling of material handling operations using controlled traffic. biosystems engineering, 103(4), pp. 397-408. [Online] Disponible en: https://doi.org/10.1016/j.biosystemseng.2009.02.006 [Consultado 30 de Marzo de 2017]

Bochtis, D. D.; Oksanen, T. (2009). Combined coverage path planning for field operations. In Proc. Joint International Agricultural Conference, JIAC, pp. 521-527. [Online] Disponible en: https://www.scopus.com/inward/record [Consultado 29 de Marzo de 2017]

Corner, J. L.; Foulds, L. R. (2005). Scheduling the Harvesting Operations of a Forest Block: A Case Study. Asia-Pacific Journal of Operational Research, 22(03), pp. 377-390. [Online] Disponible en: https://doi.org/10.1142/S0217595905000674 [Consultado 29 de Marzo de 2017]

Costa, C.; Menesatti, P.; Spinelli, R. (2012). Performance modelling in forest operations through partial least square regression. Silva Fennica, 46(2), pp. 241-252. [Online] Disponible en: https://doi.org/10.14214/sf.57 [Consultado 30 de Marzo de 2017]

Cunha, J. P.; Silva, F. M. D.; Andrade, E. T. D.; Carvalho, L. C. (2016). Modeling of operational performance parameters applied in mechanized harvest of coffee. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(10), pp. 946-952. [Online] Disponible en: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n10p946-952 [Consultado 30 de Marzo de 2017]

Da Silva, J.E.A.R.; Alves, M.R.P.A.; Da Costa, M.A.B. (2011). Planejamento de turnos de trabalho: uma abordagem no setor sucroalcooleiro com uso de simulação discreta. Gestão & Produção, 18(1), pp. 73-90. [Online] Disponible en: http://dx.doi.org/10.1590/S0104-530X2011000100006 [Consultado 31 de Marzo de 2017]

Eakin, H.; Bojórquez-Tapia, L. A.; Diaz, R. M.; Castellanos, E.; Haggar, J. (2011). Adaptive capacity and social-environmental change: theoretical and operational modeling of smallholder coffee systems response in Mesoamerican Pacific Rim. Environmental management, 47(3), pp. 352-367. [Online] Disponible en: https://doi.org/10.1007/s00267-010-9603-2 [Consultado 31 de Marzo de 2017]

Edwards, G.; Bochtis, D.; Søresen, C. G. (2013). Multi-machine coordination: Scheduling operations based on readiness criteria and using a modified tabu search algorithm. IFAC Proceedings Volumes, 46(18), pp. 191-195. [Online] Disponible en: http://dx.doi.org/10.3182/20130828-2-SF-3019.00023 [Consultado 30 de Marzo de 2017]

Edwards, G.; Sørensen, C. G.; Bochtis, D. D.; Munkholm, L. J. (2015). Optimised schedules for sequential agricultural operations using a Tabu Search method. Computers and Electronics in Agriculture, 117, pp. 102-113. [Online] Disponible en: https://doi.org/10.1016/j.compag.2015.07.007 [Consultado 29 de Marzo de 2017]

Engler, B.; Becker, G.; Hoffmann, S. (2016). Process mechanization models for improved Eucalyptus plantation management in Southern China based on the analysis of currently applied semi-mechanized harvesting operations. Biomass and Bioenergy, 87, pp. 96-106. [Online] Disponible en: https://doi.org/10.1016/j.biombioe.2016.02.021 [Consultado 29 de Marzo de 2017]

Ferrer, J. C.; Mac Cawley, A.; Maturana, S.; Toloza, S.; Vera, J. (2008). An optimization approach for scheduling wine grape harvest operations.International Journal of Production Economics, 112(2), pp. 985-999. [Online] Disponible en: https://doi.org/10.1016/j.ijpe.2007.05.020 [Consultado 30 de Marzo de 2017]

Foulds, L. R.; Zhao, X. D. (2007). A Decision Support System for sustainable maize harvesting operations scheduling. International Journal of Business Information Systems, 2(4), pp. 372-391. [Online] Disponible en: http://dx.doi.org/10.1504/IJBIS.2007.012541 [Consultado 30 de Marzo de 2017]

Fulin, W.; Shengxue, Z.; Xiaoming, F. (2016). Improved estimation model and empirical analysis of relationship between agricultural mechanization level and labor demand. International Journal of Agricultural and Biological Engineering, 9(2), pp. 48. [Online] Disponible en: 10.3965/j.ijabe.20160902.2188 [Consultado 30 de Marzo de 2017]

Guan, S.; Nakamura, M.; Shikanai, T.; Okazaki, T. (2008). Hybrid Petri nets modeling for farm work flow. Computers and electronics in agriculture, 62(2), pp. 149-158. [Online] Disponible en: https://doi.org/10.1016/j.compag.2007.12.006 [Consultado 30 de Marzo de 2017]

Hameed, I. A.; Bochtis, D. D.; Sørensen, C. G.; Nøremark, M. (2010). Automated generation of guidance lines for operational field planning. Biosystems Engineering, 107(4), pp. 294-306. [Online] Disponible en: https://doi.org/10.1016/j.biosystemseng.2010.09.001 [Consultado 30 de Marzo de 2017]

Jensen, M. F.; Bochtis, D.; Sørensen, C. G. (2015). Coverage planning for capacitated field operations, part II: Optimisation. Biosystems Engineering, 139, pp. 149-164. [Online] Disponible en: https://doi.org/10.1016/j.biosystemseng.2015.07.002 [Consultado 30 de Marzo de 2017]

Jensen, M. F.; Nørremark, M.; Busato, P.; Sørensen, C. G.; Bochtis, D. (2015). Coverage planning for capacitated field operations, Part I: Task decomposition. Biosystems Engineering, 139, pp. 136-148. [Online] Disponible en: https://doi.org/10.1016/j.biosystemseng.2015.07.003 [Consultado 30 de Marzo de 2017]

Joannon, A.; Papy, F.; Martin, P.; Souchère, V. (2005). Planning work constraints within farms to reduce runoff at catchment level. Agriculture, ecosystems y environment, 111(1), pp. 13-20. [Online] Disponible en: https://doi.org/10.1016/j.agee.2005.04.021 [Consultado 30 de Marzo de 2017]

Khani, M.; Keyhani, A.; Parsinejad, M.; Alimardani, R. (2010). Verification and sensitivity analysis of a model for determination of probability of a working day for tillage. International Agrophysics, 25(1), pp. 27-35. [Online] Disponible en: http://www.old.international-agrophysics.org/ [Consultado 29 de Marzo de 2017]

Marques, A. F.; de Sousa, J. P.; Rönnqvist, M. (2014). Combining optimization and simulation tools for short-term planning of forest operations.Scandinavian Journal of Forest Research, 29(sup1), pp. 166-177. [Online] Disponible en: http://dx.doi.org/10.1080/02827581.2013.856937 [Consultado 30 de Marzo de 2017]

Monjezi, N.; Sheikhdavoodi, M. J.; Zakidizaji, H.; Marzban, A.; Shomeili, M. (2016). Operations scheduling of sugarcane production using fuzzy GERT method (part II: preserve operations, harvesting and ratooning). Agricultural Engineering International: CIGR Journal, 18(3), pp. 343-349. [Online] Disponible en: http://www.cigrjournal.org/ [Consultado 31 de Marzo de 2017]

Montgomery, T. D.; Han, H. S.; Kizha, A. R. (2016). Modeling work plan logistics for centralized biomass recovery operations in mountainous terrain. Biomass and Bioenergy, 85, pp. 262-270. [Online] Disponible en: http://dx.doi.org/10.1016/j.biombioe.2015.11.023 [Consultado 31 de Marzo de 2017]

Naivinit, W.; Le Page, C.; Trébuil, G.; Gajaseni, N. (2010). Participatory agent-based modeling and simulation of rice production and labor migrations in Northeast Thailand. Environmental Modelling y Software, 25(11), pp. 1345-1358. [Online] Disponible en: https://doi.org/10.1016/j.envsoft.2010.01.012 [Consultado 30 de Marzo de 2017]

Ooster, A.; Bontsema, J.; van Henten, E. J.; Hemming, S. (2013). Sensitivity analysis of a stochastic discrete event simulation model of harvest operations in a static rose cultivation system. Biosystems engineering, 116(4), pp. 457-469. [Online] Disponible en: https://doi.org/10.1016/j.biosystemseng.2013.10.009 [Consultado 30 de Marzo de 2017]

Ooster, A.; Bontsema, J.; van Henten, E. J.; Hemming, S. (2015). Model-based analysis of skill oriented labour management in a multi-operations and multi-worker static cut rose cultivation system. Biosystems Engineering, 135, pp. 87-102. [Online] Disponible en: https://doi.org/10.1016/j.biosystemseng.2015.04.014 [Consultado 30 de Marzo de 2017]

Pardo, G.; Riravololona, M.; Munier-Jolain, N. M. (2010). Using a farming system model to evaluate cropping system prototypes: Are labour constraints and economic performances hampering the adoption of Integrated Weed Management?. European Journal of Agronomy, 33(1), pp. 24-32. [Online] Disponible en: https://doi.org/10.1016/j.eja.2010.02.003 [Consultado 30 de Marzo de 2017]

Pathumnakul, S.; Nakrachata-Amon, T. (2015). The Applications of Operations Research in Harvest Planning: A Case Study of the Sugarcane Industry in Thailand. Journal of the Management Association of Japan, 65(4E), pp. 328-333. [Online] Disponible en: https://www.scopus.com/inward/record [Consultado 30 de Marzo de 2017]

Ruiz-Torres, A. J., Villalobos, J. R., Salvador-Jijon, M., y Alomoto, N. (2012). Planning models for floriculture operations. International Journal of Applied Management Science, 4(2), pp. 148-164. [Online] Disponible en: http://dx.doi.org/10.1504/IJAMS.2012.046206 [Consultado 30 de Marzo de 2017]

Sopegno, A.; Busato, P.; Berruto, R.; Romanelli, T. L. (2016). A cost prediction model for machine operation in multi-field production systems. Scientia Agricola, 73(5), pp. 397-405. [Online] Disponible en: http://dx.doi.org/10.1590/0103-9016-2015-0304 [Consultado 31 de Marzo de 2017]

Sørensen, C. G.; Nielsen, V. (2005). Operational analyses and model comparison of machinery systems for reduced tillage. Biosystems engineering, 92(2), pp. 143-155. [Online] Disponible en: https://doi.org/10.1016/j.biosystemseng.2005.06.014 [Consultado 30 de Marzo de 2017]

Stuart, O. (1971). The utilisation of operations research techniques in the planning of agricultural undertakings. Agrekon, 10(4), pp. 12-15. [Online] Disponible en: http://dx.doi.org/10.1080/03031853.1971.9523861 [Consultado 30 de Marzo de 2017]

Thangavadivelu, S.; Colvin, T. S. (1997) Fuzzy-Logic-Based Decision Support System for Scheduling Tillage Operations. Engineering Applications of Artificial Intelligence, 10 (5), pp. 463-472. [Online] Disponible en: http://dx.doi.org/10.1016/S0952-1976(97)00023-7 [Consultado 31 de Marzo de 2017]

Tittonell, P.; Van Wijk, M. T.; Rufino, M. C.; Vrugt, J. A.; Giller, K. E. (2007). Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: a case-study from Kakamega district, western Kenya. Agricultural Systems, 95(1), pp. 76-95. [Online] Disponible en: https://doi.org/10.1016/j.agsy.2007.04.002 [Consultado 29 de Marzo de 2017].

Tiwari, P. S.; Gite, L. P. (2006). Evaluation of work-rest schedules during operation of a rotary power tiller. International Journal of Industrial Ergonomics, 36(3), pp. 203-210. [Online] Disponible en: https://doi.org/10.1016/j.ergon.2005.11.001 [Consultado 30 de Marzo de 2017]

Van Wyk, S. P.; Hattingh, H. S. (1964). Labour Planning of a Diversified Farm on the Transvaal Highveld. Agrekon, 3(1), pp. 20-31. [Online] Disponible en: http://dx.doi.org/10.1080/03031853.1964.9524453 [Consultado 30 de Marzo de 2017]

Van Elderen, E. (1978). Scheduling farm operations. European Journal of Operational Research, 4(1), pp. 19-23. [Online] Disponible en: https://doi.org/10.1016/0377-2217(80)90035-1 [Consultado 30 de Marzo de 2017]

Van Elderen, E. (1980). Models and techniques for scheduling farm operations: a comparison. Agricultural systems, 5(1), pp. 1-17. [Online] Disponible en: http://dx.doi.org/10.1016/0308-521X(80)90016-5 [Consultado 30 de Marzo de 2017]

Weintraub, A.; Romero, C. (2006). Operations research models and the management of agricultural and forestry resources: a review and comparison. Interfaces, 36(5), pp. 446-457. [Online] Disponible en: 10.1287/inte.1060.0222 [Consultado 30 de Marzo de 2017]

Wijngaard, P. J. (1988). A heuristic for scheduling problems, especially for scheduling farm operations. European journal of operational research, 37(1), pp. 127-135. [Online] Disponible en: http://dx.doi.org/10.1016/0377-2217(88)90287-1 [Consultado 31 de Marzo de 2017]

Wishon, C.; Villalobos, J. R.; Mason, N.; Flores, H.; Lujan, G. (2015). Use of MIP for planning temporary immigrant farm labor force. International Journal of Production Economics, 170, pp. 25-33. [Online] Disponible en: https://doi.org/10.1016/j.ijpe.2015.09.004 [Consultado 31 de Marzo de 2017]

Zhou, K.; Jensen, A. L.; Bochtis, D. D.; Sørensen, C. G. (2015). Simulation model for the sequential in-field machinery operations in a potato production system. Computers and Electronics in Agriculture, 116, pp. 173-186. [Online] Disponible en: https://doi.org/10.1016/j.compag.2015.06.018 [Consultado 29 de Marzo de 2017]

Zhou, K.; Jensen, A. L.; Sørensen, C. G.; Busato, P.; Bothtis, D. D. (2014). Agricultural operations planning in fields with multiple obstacle areas.Computers and Electronics in Agriculture, 109, pp. 12-22. [Online] Disponible en: https://doi.org/10.1016/j.compag.2014.08.013 [Consultado 31 de Marzo de 2017]




DOI: https://doi.org/10.24050/reia.v15i30.1151

Métricas de artículo

Vistas de resumen
18




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2018 Revista EIA

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.




 

 

 

 

 

UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |