Efecto del sistema de vulcanización en la red entrecruzada y en la reacción química de vulcanización del caucho natural

Efecto del sistema de vulcanización en la red entrecruzada y en la reacción química de vulcanización del caucho natural

Contenido principal del artículo

William Urrego Yepes
Sandra Milena Velásquez Restrepo
Diego Hernán Giraldo Vásquez
Juan Carlos Posada Correa

Resumen

Se presenta una revisión sobre el efecto del sistema de vulcanización en la estructura formada durante la reacción de vulcanización, en la cinética de la reacción y en las propiedades de formulaciones que emplean caucho natural. Se encontró que aún existen aspectos por investigar dada la variedad de acelerantes, proporciones acelerante/azufre, tipos de caucho natural y formulaciones que emplean caucho natural. La mayor parte de la literatura evalúa la reacción de vulcanización mediante reometría de vulcanización y calorimetría diferencial de barrido (DSC), pero estas técnicas no permiten identificar el tipo de enlaces sulfídicos formados ni la densidad de enlaces entrecruzados. La temática es de gran interés científico e industrial pues el caucho natural es el caucho más comercializado a nivel mundial, y su vulcanización se realiza en la gran mayoría de las formulaciones empleando azufre como agente entrecruzante.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

William Urrego Yepes, Instituto Tecnológico Metropolitano (ITM)

Departamento de Ingeniería de Producción, Docente investigador tiempo Completo

Referencias (VER)

Akay M., 2012. Introduction To Polymer Sciense And Technology. 1 St Ed. Mustafa Akay Ventus Publ. ApS.

Akiba, M., Hashim, A.S., 1997. Vulcanization and crosslinking in elastomers. Prog. Polym. Sci. 22, 475–521.

Akinlabi, A.K., Okieimen, F.E., Egharevba, F., Malomo, D., 2006. Investigation of the effect of mixing schemes on rheological and physico-mechanical properties of modified natural rubber blends. Mater. Des. 27, 783–788. doi:10.1016/j.matdes.2005.01.007

Allen, P.W., Bristow, G.M., 1963. The gel phase in Natural Rubber. J. Appl. Polym. Sci. 7, 603–615.

ASTM D3182, 2013. Standard Practice for Rubber — Materials , Equipment , and Procedures for Mixing Standard Compounds.

ASTM D5289, 2012. Test Method for Rubber Property--Vulcanization Using Rotorless Cure Meters. ASTM International.

B.I Gengrinovich, 1954. Calorific and thermal properties of natural rubber in the oriented and non-oriented states. Rubber Chem. Technol. 95, 571–574.

Blokh, G.A., Yaroshevich, A.G., 1957. The interaction between carbon black and sulfur during vulcanization. Proceeding Acadmey Sci. USSR Phys Chem Sect 116, 583–586.

Cerveny, S., Marzocca, A.J., 1999. Analysis of variation of molecular parameters of natural rubber during vulcanization in conformational tube model. II. Influence of sulfur/accelerator ratio. J. Appl. Polym. Sci. 74, 2747–2755. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097–4628(19991209)74:11%3C2747::AID–APP22%3E3.0.CO;2–N/full.

Coran, A., 2013. 7 Vulcanization. Sci. Technol. Rubber 337.

Datta, R.., 2002. Rubber curing systems. iSmithers Rapra Publishing. http://books.google.com/books?hl=en&lr=&id=XoZa5t3_ogAC&oi=fnd&pg=PA3&dq=%22Evans,+Engelmann+%26+Buckham%22+%22Research+(Caswell)%22+%22%26+N+Technology+Ltd.+and+BIP+Chemicals%22+%22Coates+and+A.F.+Johnson,+IRC+in+Polymer%22+%22G.+Woods,%22+%22Kirby,+Du+Pont+(U.K.)%22+&ots=mu32fkpbF0&sig=Nr_6AjWksG7OtoVPaZOXFiogeYY.

Davies, B., 1986. Natural rubber—Its engineering characteristics. Mater. Des. 7, 68–74. http://www.sciencedirect.com/science/article/pii/S0261306986800048.

De Snaijer, H., Yuen, J., 2016. Handbook of styrene butadiene rubber. Scitus Acad. LLC.

Dick, J.S., 2011. Basic rubber testing selecting methods for a rubber test program. ASTM International, West Conshohocken, Pa.

Fernández, M.., Gonzáles, N., Mugica, A., Bernicot, C., 2006. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochem. Acta 1, 65–70.

Ferry, J., Gee, G., Treloar, L.R.., 1945. The interaction between rubber and liquids. VII. The heats and entropies of dilution of natural rubber by various liquids. Rubber Chem. Technol. 19, 1–13.

Flory, P.J., 1942. Constitution of three dimensional polymers and the theory of gelation. J. Phys. Chem. 46, 132–140.

Flory, P.J., Rehner, J., 1943a. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 11, 512. doi:10.1063/1.1723791

Flory, P.J., Rehner, J., 1943b. Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling. J. Chem. Phys. 11, 521. http://link.aip.org/link/JCPSA6/v11/i11/p521/s1&Agg=doi. doi:10.1063/1.1723792

Franck, A., Hafner, K., Kern, W.F., 1962. The activation energy of vulcanization. Rubber Chem. Technol. 35, 76–91.

Gee, G., 1943. The interaction between rubber and liquids III. The swellingof vulcanized rubber in various liquids. Rubber Chem. Technol. 16, 263–267.

Gee, G., 1942. The interaction between rubber and liquids II. Thermodynamical basis of the swelling and solution of rubber. Rubber Chem. Technol. 15, 545–552.

Gradwell, M.H.S., Merwe, M.J., 1999a. Reaction of 2-t-butilbenzothiazole sulfenamida with sulfur and zinc oxide in the absence of rubber. Rubber Chem. Technol. 72, 55–64.

Gradwell, M.H.S., Merwe, M.J., 1999b. 2-t-butilbenzotiazole sulfenamide accelerated sulfur vulcanization of polyisoprene. Rubber Chem. Technol. 72, 65–73.

Hauser, E.A., Sze, M.C., 1942. Chemical reactions during vulcanization III. J. Phys. Chem. 46, 118–131.

Heideman, G., 2004. Reduced zinc oxide levels in sulphur vulcanisation of rubber compounds: mechanistic aspects of the role of activators and multifunctional additives. s.n.], S.l.

Heideman, G., Datta, R.N., Noordermeer, J.W.M., Baarle, B.V., 2004. Activators in accelerated sulfur vulcanization. Rubber Chem. Technol. 77, 512–541.

Heinrich, G., Straube, E., Helmis, G., 1988. Rubber elasticity of polymer networks: Theories. Adv. Polym. Sci. 85, 33–87.

Jarny, Y., 2000. SIMULTANEOUS ESTIMATION OF KINETIC PARAMETERS USING GENETIC ALGORITHMS, in: Inverse Problems in Engineering: Theory and Practice: Presented at the 3rd International Conference on Inverse Problems in Engineering, Theory and Practice, June 13-18, 1999, Port Ludlow, Washington. p. 263. http://www.me.ua.edu/3icipe/papers/paper61.pdf.

Kamal, M.R., Sourour, S., 1973. Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 13, 59–64.

Krishnan, S., 2015. Natural rubber latex filler masterbatch: preparation, processing and evaluation. Sch. Press.

Kuptsov, A.H., Zhizhin, G.N., 1998. Handbook of fourier transform Raman and Infrared spectra of polymers, Elsevier. ed.

Lloyd, D.G., 1991. Additives in rubber processing. Mater. Des. 12, 139–146. http://www.sciencedirect.com/science/article/pii/026130699190122K.

Loo, C.T., 1974. High temperature vulcanization of elastomers: 3. Network structure of efficiently vulcanized natural rubber mixes. Polymer 15, 729–737.

Mansilla, M.A., 2012. Influencia de la microestructura en las propiedades mecánicas y térmicas de mezclas de caucho natural y caucho estireno butadieno http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5117_Mansilla.pdf.

Mansilla, M.A., Quasso, F., Marzocca, A.J., 2007. CARACTERIZACIÓN DE MEZCLAS VULCANIZADAS DE CAUCHO ESTIRENO BUTADIENO Y CAUCHO NATURAL http://www.materiales-org.ar/sitio/biblioteca/CONAMET-SAM2007/sam%20conamet%2007/pdf/T%C3%B3pico%2010%20-%20Materiales%20Polim%C3%A9ricos/10-14%20MansillaM%20(O).pdf.

Mark, J.E., Erman, B., Roland, M., 2013. The science and technology of rubber (4th ed.). Acad. Press.

Martinez Valdés, M., 2012. Financiamiento, insumo para las empresas productoras de hule natural: procedimientos, riesgos y requisitos para una dispersión de recursos financieros eficiente. Editor. Académica Esp.

Marzocca, A.J., 2007. Evaluation of the polymer–solvent interaction parameter χ for the system cured styrene butadiene rubber and toluene. Eur. Polym. J. 43, 2682–2689. http://linkinghub.elsevier.com/retrieve/pii/S0014305707001358. doi:10.1016/j.eurpolymj.2007.02.034

Marzocca, A.J., 2003. Relación entre la cinetica de formación de entrecruzamientos y las propiedades mecánicas de elastomeros vulcanizados. Presented at the Jornadas SAM/CONAMET/Simposio materia, pp. 886–889.

Marzocca, A.J., Cerveny, S., Raimondo, R.B., 1997. Analysis of the variation of molecular parameters of NR during vulcanization in the frame of the conformational tube model. J. Appl. Polym. Sci. 66, 1085–1092.

http://dipc.ehu.es/cerveny/index_htm_files/journal%20of%20polym%20sci%2066%20(1997)%201085.pdf.

Marzocca, A.J., Rodriguez Garraza, A.L., Sorichetti, P., Mosca, H.O., 2010. Cure kinetics and swelling behaviour in polybutadiene rubber. Polym. Test. 29, 477–482. http://linkinghub.elsevier.com/retrieve/pii/S0142941810000280. doi:10.1016/j.polymertesting.2010.02.008

Marzocca, A.J., Steren, C.A., Raimondo, R.B., Cerveny, S., 2004. Influence of the cure level on the monomeric friction coefficient of natural rubber vulcanizates. Polym. Int. 53, 646–655. http://doi.wiley.com/10.1002/pi.1378. doi:10.1002/pi.1378

Mayer, R., 1977. Organic Chemistry of sulfur, S. OAE. ed. Plenum Press, New York.

Morrison, N.J., 1984a. The reactions of crosslink precursors in natural rubber. Rubber Chem. Technol. 57, 86–96.

Morrison, N.J., 1984b. The formation of crosslink precursors in the sulfur vulcanization of natural rubber. Rubber Chem. Technol. 57, 97–103.

Morrison, N.J., Porter, M., 1984a. Temperature effects on the stability of intermediates and crosslinks in sulfur vulcanization. Rubber Chem. Technol. 57, 63–85.

Morrison, N.J., Porter, M., 1984b. Crosslinking of rubbers. Synth. Charact. React. Appl. Polym. G Allen Ed Pergamon Press 57, 115.

Mukhopadhyay, R., Bhowmick, A.K., De, S.K., 1978. Effect of vulcanzation temperature and synergism of accelerators on the network and technical properties of efficiently vulcanized natural rubber mixes. Polymer 19, 1176–1180.

Mukhopadhyay, R., De, S.K., 1977. Effect of vulcanization temperature and vulcanization systems on the structure and properties of natural rubber vulcanizates. Polymer 18, 1243–1249.

Nallasamy, P., Mohan, S., 2004. Vibrational spectra of cis-1,4-Polyisoprene. Arab. J. Sci. Eng. 1A, 17–26.

Ohio, A., 1994. The Science ot Rubber Compounding. Sci. End Technol. Rubber 419. http://books.google.com/books?hl=en&lr=&id=3DRBl2L_lgUC&oi=fnd&pg=PA419&dq=%22rubber+usage+has+increased+substantially+in+modern+radial%22+%22tire+for+a+radial+construction+compared+with+approximately+9+kg+found%22+%22consumption+is+virtually+in+line+with+the+gross+national+product%22+&ots=kr_H4i8Hx2&sig=lxuYlhqJGtxiwcTo8SU_bs1XRpE.

Ohm, R.F., 1990. The Vanderbilt Rubber Handbook, R.T Vanderbilt Company, INC. ed. Norwalk.

Peres, A.C., Lopes, L.M., Visconte, L.L., Nunes, R.C., 2006. Uso de DSC na determinaccão de parâmetros de vulcanizaccão de látex de borracha natural. Polim. Cienc. E Tecnol. 16, 61. http://www.scielo.br/pdf/po/v16n1/v16n1a13.pdf.

Pinchuk, L., Jurkowski, B., Kravtsov, A., Goldade, V., 2001. On some variations in rubber charge state during procesing. Eur. Polym. J. 37, 2239–2243.

Priyadarshan, P.M., 2017. Biology of hevea rubber. Springer.

Rabearison, N., Jochum, C., Grandidier, J.C., 2010. A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy. J. Mater. Sci. 46, 787-796. http://link.springer.com/10.1007/s10853-010-4815–7. doi:10.1007/s10853-010-4815-7

Roland, C.M., 2004. Naval applications of elastomers. Rubber Chem. Technol. 77, 542–551.

Saville, B., Watson, A.A., 1963. Structural characterization of sulfur vulcanizated rubber networks. Rubber Chem. Technol. 36, 547.

Shelton, J.R., McDonel, E.T., 1960. Investigation of radical and polar mechanisms in vulcanization reactions. Rubber Chem. Technol. 33, 342–356.

Urrego, W., Giraldo, D., Álvarez-Láinez, M., 2012. Análisis cuantitativo por FTIR y evaluación comparativa de la descomposición térmica de tres variedades de caucho natural Colombiano. Presented at the SLAP 2012 XIII Simposio latinoamericano de polímeros, Colombia.

Vergnaud, J.M., Rosca, I.-D., 2009. Rubber curing and properties. CRC Press/Taylor & Francis, Boca Raton. http://www.crcnetbase.com/isbn/978-1-4200-8522-8.

Villars, D.S., 1957. Studies on carbon black. III. Theory of bound rubber. Rubber Chem. Technol. 30, 157–169.

WHITE, J.L., 1994. Rheological Behavior and Processing ot Unvulcanized Rubber. Sci. End Technol. Rubber 257. http://books.google.com/books?hl=en&lr=&id=3DRBl2L_lgUC&oi=fnd&pg=PA257&dq=%22and+others,+many+long+forgotten.+It+was+not,+however,+until%22+%22%5BM40,+M41,+M46%5D+of+the+U.S.+Rubber+Company+(the+last+two+in%22+%22compounded+with+large+quantities+of+small+particles+exhibited+a%22+&ots=kr_H4i8Hx4&sig=wbyWW8O3l7XI7pHD0sElCv3SpYs.

Wren, W.G., 1960. The chemistry of natural rubber production. Rubber Chem. Technol. 12, 378–412.

Zapata, N.C.R., Osswald, T.A., Ortiz, J.P.H., 2012. CINÉTICA DE CURADO DE UN CAUCHO EPDM Y UNA RESINA EPOXÍDICA ALIFÁTICA. MODELAMIENTO Y ANÁLISIS SIN Y CON DIFUSIÓN. Rev. Iberoam. Polímeros 14, 6.