Métodos de clasificación para identificar lesiones en piel a partir de espectros de reflexión difusa (Classification methods to identify lesions in skin starting from spectra of diffuse reflectance)

Eber Enrique Orozco Guillén, Guillermo Iruretagoyena Garcia, Sergio Vázquez y Montiel, José Alberto Delgado-Atencio, Jorge Castro Ramos, Francisco Gutiérrez Delgado

Resumen


Con el objetivo de discriminar lesiones benignas y malignas en la piel humana a partir de espectros de reflexión difusa, se han analizado diferentes algoritmos de clasificación usando el software de aprendizaje automático y reconocimiento de patrones WEKA. Además, dada la alta dimensionalidad de la señal espectral, fue empleada una técnica selección de atributos para determinar las variables que aporten la mayor cantidad de información. Se probó la clasificación de la señal usando los algoritmos de máquinas de vectores de soporte, redes neuronales y bosques aleatorios, el desempeño fue evaluado usando el promedio de la k-fold cross-validation tomando en cuenta los porcentajes de instancias clasificadas correctamente, el índice kappa, el área bajo la curva ROC, la sensibilidad, y la especifidad. Finalmente se demuestra que el algoritmo de redes neuronales con los parámetros momentum y learning rate en 0,6 y 0,3 respectivamente, es el que mejor se adapta al problema de reconocimiento de patrones ya que clasifica correctamente al 89,89% de los casos.

Abstract: In order to differentiate between benign and malignant lesions in the human skin using diffuse reflection spectra, different classification algorithms were tested using the WEKA data mining software. In addition, due to the high dimensionality of the spectral signal, an attribute selection technique was applied to determine the variables that contribute with more information. The spectral signal classification was tested using support vector machines, neural networks and random forests, their performance was measured using the k-fold cross-validation percentages of the Kappa statistic, area under the ROC curve, specificity and sensitivity. Finally it is shown that the one layer neural network with 6 neurons and the parameters momentum and learning rate in 0.6 and 0.3 respectively, is best suited to the problem of pattern recognition, achieving correctly classify 89.89% of the cases.


Palabras clave


Cáncer, Espectroscopia de reflexión difusa, Óptica de tejidos, Reconocimiento de patrones. Keywords: Cancer, Diffuse reflectance spectroscopy, Tissue optics, Pattern recognition.



DOI: https://doi.org/10.24050/19099762.n8.2010.113

Métricas de artículo

Vistas de resumen
127




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.


UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |