Una Actualización Sobre Aplicaciones Ortopédicas Usando Tecnologías de Impresión Tridimensional

Jaebum Son, Diana Sofía Herrera Valenzuela, María Camila Sacristán Gutiérrez, Paola Mariana Vargas Castellanos


En este artículo se revisan las aplicaciones tecnológicas de la impresión tridimensional (3DP) en Ortopedia. La impresión 3D es el proceso de manufacturar para construir objetos tridimensionales a través de la acumulación de material, y recientemente está llamando la atención de profesionales médicos de forma significativa. La Ortopedia es probablemente la mayor área de aplicación de esta tecnología, y está siendo probada en diversos procedimientos, desde hacer planeación quirúrgica hasta manufacturar implantes para probar su utilidad. Sin embargo, esta tecnología no ha superado completamente los problemas que surgieron en la década de los noventa, estas limitaciones serán superadas eventualmente cuando la velocidad del desarrollo tecnológico sea considerada.

Palabras clave

Impresión 3D, Órtesis, Ortopedia, Planeación Quirúrgica, Prótesis.

Texto completo:



H. Kodama, “Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer,” Rev. Sci. Instrum., vol. 52, no. 11, pp. 1770–1773, 1981.

C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography.” Google Patents, 1986.

J. Rovic, R. Chan, R. Van Vorhis, and D. Childress, “Computer-aided manufacturing in prosthetics: various possibilities using industrial equipment,” in Proceedings of the 7th World Congress of the International Society for Prosthetics and Orthotics, 1992.

W. E. Rogers, R. H. Crawford, J. J. Beaman, and N. E. Walsh, “Fabrication of Prosthetic Sockets by Selective Laser Sintering,” in Solid Freeform Fabrication Symposium, 1991, pp. 158–163.

D. Freeman and L. Wontorcik, “Stereolithography and Prosthetic Test Socket Manufacture: A Cost/Benefit ,” J. Prosthetics Orthot., vol. 10, no. 1, pp. 17–20, 1998.

L. Mearian, “HP begins selling its Jet Fusion 3D printer; says it’s 50% cheaper, 10X faster than others,” Computerworld, IDG Communications, Inc., 2016.

F. Rengier et al., “3D printing based on imaging data: review of medical applications,” Int J Comput Assist Radiol Surg, vol. 5, no. 4, pp. 335–341, 2010.

S. Jacobs, R. Grunert, F. W. Mohr, and V. Falk, “3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study,” Interact Cardiovasc Thorac Surg, vol. 7, no. 1, pp. 6–9, 2008.

M. D. Tam, S. D. Laycock, D. Bell, and A. Chojnowski, “3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia,” J Radiol Case Rep, vol. 6, no. 1, pp. 31–37, 2012.

L. Karlin, P. Weinstock, D. Hedequist, and S. P. Prabhu, “The surgical treatment of spinal deformity in children with myelomeningocele: the role of personalized three-dimensional printed models,” J Pediatr Orthop B, 2016.

N. N. Zein et al., “Three-dimensional print of a liver for preoperative planning in living donor liver transplantation,” Liver Transpl, vol. 19, no. 12, pp. 1304–1310, 2013.

N. Van Assche et al., “Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study,” J Clin Periodontol, vol. 34, no. 9, pp. 816–821, 2007.

D. Schmauss et al., “Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement,” Ann Thorac Surg, vol. 93, no. 2, pp. e31-3, 2012.

K. Burzynska, P. Morasiewicz, and J. Filipiak, “The Use of 3D Printing Technology in the Ilizarov Method Treatment: Pilot Study,” Adv Clin Exp Med, vol. 25, no. 6, pp. 1157–1163, 2016.

D. N. Silva, M. Gerhardt de Oliveira, E. Meurer, M. I. Meurer, J. V Lopes da Silva, and A. Santa-Barbara, “Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction,” J Craniomaxillofac Surg, vol. 36, no. 8, pp. 443–449, 2008.

J. Faber, P. M. Berto, and M. Quaresma, “Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction,” Am J Orthod Dentofac.

Orthop, vol. 129, no. 4, pp. 583–589, 2006.

A. Muller, K. G. Krishnan, E. Uhl, and G. Mast, “The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery,” J Craniofac Surg, vol. 14, no. 6, pp. 899–914, 2003.

J. Guarino, S. Tennyson, G. McCain, L. Bond, K. Shea, and H. King, “Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis,” J Pediatr Orthop, vol. 27, no. 8, pp. 955–960, 2007.

W. G. Blakeney, R. Day, L. Cusick, and R. L. Smith, “Custom osteotomy guides for resection of a pelvic chondrosarcoma,” Acta Orthop, vol. 85, no. 4, pp. 438–441, 2014.

W. S. Paiva, R. Amorim, D. A. Bezerra, and M. Masini, “Aplication of the stereolithography technique in complex spine surgery,” Arq Neuropsiquiatr, vol. 65, no. 2b, pp. 443–445, 2007.

C. Hurson, A. Tansey, B. O’Donnchadha, P. Nicholson, J. Rice, and J. McElwain, “Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures,” Injury, vol. 38, no. 10, pp. 1158–1162, 2007.

M. Kozakiewicz et al., “Clinical application of 3D pre-bent titanium implants for orbital floor fractures.,” J. Craniomaxillofac. Surg., vol. 37, no. 4, pp. 229–34, Jun. 2009.

A. W. Yu, J. M. Duncan, J. S. Daurka, A. Lewis, and J. Cobb, “A feasibility study into the use of three-dimensional printer modelling in acetabular fracture surgery,” Adv Orthop, vol. 2015, p. 617046, 2015.

L. Ciocca, S. Mazzoni, M. Fantini, F. Persiani, C. Marchetti, and R. Scotti, “CAD/CAM guided secondary mandibular reconstruction of a discontinuity defect after ablative cancer surgery,” J Craniomaxillofac Surg, vol. 40, no. 8, pp. e511-5, 2012.

A. Tarsitano, S. Mazzoni, R. Cipriani, R. Scotti, C. Marchetti, and L. Ciocca, “The CAD-CAM technique for mandibular reconstruction: an 18 patients oncological case-series,” J Craniomaxillofac Surg, vol. 42, no. 7, pp. 1460–1464, 2014.

R. H. Schepers et al., “Accuracy of fibula reconstruction using patient-specific CAD/CAM reconstruction plates and dental implants: A new modality for functional reconstruction of mandibular defects,” J Craniomaxillofac Surg, vol. 43, no. 5, pp. 649–657, 2015.

A. L. Jardini et al., “Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing,” J Craniomaxillofac Surg, vol. 42, no. 8, pp. 1877–1884, 2014.

E. K. Park et al., “Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects,” J Craniofac Surg, vol. 27, no. 4, pp. 943–949, 2016.

P. Stoor et al., “Rapid prototyped patient specific implants for reconstruction of orbital wall defects,” J Craniomaxillofac Surg, vol. 42, no. 8, pp. 1644–1649, 2014.

G. Shankaran, S. C. Deogade, and R. Dhirawani, “Fabrication of a Cranial Prosthesis Combined with an Ocular Prosthesis Using Rapid Prototyping: A Case Report,” J Dent, vol. 13, no. 1, pp. 68–72, 2016.

J. Imanishi and P. F. Choong, “Three-dimensional printed calcaneal prosthesis following total calcanectomy,” Int J Surg Case Rep, vol. 10, pp. 83–87, 2015.

L. B. Chou and M. M. Malawer, “Osteosarcoma of the calcaneus treated with prosthetic replacement with twelve years of followup: a case report.,” Foot ankle Int., vol. 28, no. 7, pp. 841–4, Jul. 2007.

N. Xu et al., “Reconstruction of the Upper Cervical Spine Using a Personalized 3D-Printed Vertebral Body in an Adolescent With Ewing Sarcoma,” Spine (Phila Pa 1976), vol. 41, no. 1, pp. E50-4, 2016.

F. Lusquiños et al., “Bioceramic 3D Implants Produced by Laser Assisted Additive Manufacturing,” Phys. Procedia, vol. 56, pp. 309–316, 2014.

M. Roskies et al., “Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells,” J Biomater Appl, vol. 31, no. 1, pp. 132–139, Jul. 2016.

F. Pati, T.-H. Song, G. Rijal, J. Jang, S. W. Kim, and D.-W. Cho, “Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.,” Biomaterials, vol. 37, pp. 230–41, Jan. 2015.

B. Mazzarese, N. Nicotera, and H. Theriault, “Modeling bone fixation implants with absorbable polymers using 3-D printing,” 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC). pp. 1–2, 2015.

F. Yoshioka, S. Ozawa, S. Okazaki, and Y. Tanaka, “Fabrication of an orbital prosthesis using a noncontact three-dimensional digitizer and rapid-prototyping system,” J Prosthodont, vol. 19, no. 8, pp. 598–600, 2010.

C. Runte et al., “Optical data acquisition for computer-assisted design of facial prostheses,” Int J Prosthodont, vol. 15, no. 2, pp. 129–132, 2002.

Y. Wei, C. W. Li-Tsang, J. Liu, L. Xie, and S. Yue, “3D-printed transparent facemasks in the treatment of facial hypertrophic scars of young children with burns,” Burns, 2016.

J. Sun and F. Q. Zhang, “The application of rapid prototyping in prosthodontics,” J Prosthodont, vol. 21, no. 8, pp. 641–644, 2012.

J. Han, Y. Wang, and P. Lu, “A preliminary report of designing removable partial denture frameworks using a specifically developed software package,” Int J Prosthodont, vol. 23, no. 4, pp. 370–375, 2010.

D. Eggbeer, R. Bibb, and R. Williams, “The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks,” Proc Inst Mech Eng H, vol. 219, no. 3, pp. 195–202, 2005.

S. Ruiters, Y. Sun, S. de Jong, C. Politis, and I. Mombaerts, “Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis,” Br J Ophthalmol, 2016.

B. Rogers et al., “Advanced trans-tibial socket fabrication using selective laser sintering,” Prosthet Orthot Int, vol. 31, no. 1, pp. 88–100, 2007.

S. Meanley, “Different approaches and cultural considerations in third world prosthetics,” Prosthet Orthot Int, vol. 19, no. 3, pp. 176–180, 1995.

C. Dally, D. Johnson, M. Canon, S. Ritter, and K. Mehta, “Characteristics of a 3D-printed prosthetic hand for use in developing countries,” in Global Humanitarian Technology Conference (GHTC), 2015 IEEE, 2015, pp. 66–70.

N. Eddison and N. Chockalingam, “The effect of tuning ankle foot orthoses-footwear combination on the gait parameters of children with cerebral palsy,” Prosthet Orthot Int, vol. 37, no. 2, pp. 95–107, 2013.

M. C. Faustini, R. R. Neptune, R. H. Crawford, and S. J. Stanhope, “Manufacture of Passive Dynamic ankle-foot orthoses using selective laser sintering,” IEEE Trans Biomed Eng, vol. 55, no. 2 Pt 1, pp. 784–790, 2008.

E. S. Schrank, L. Hitch, K. Wallace, R. Moore, and S. J. Stanhope, “Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses,” J Biomech Eng, vol. 135, no. 10, pp. 101011–101017, Oct. 2013.

A. S. Salles and D. E. Gyi, “An evaluation of personalised insoles developed using additive manufacturing,” J Sport. Sci, vol. 31, no. 4, pp. 442–450, 2013.

S. Telfer, M. Abbott, M. P. Steultjens, and J. Woodburn, “Dose-response effects of customised foot orthoses on lower limb kinematics and kinetics in pronated foot type,” J Biomech, vol. 46, no. 9, pp. 1489–1495, 2013.

D. A. Zopf, S. J. Hollister, M. E. Nelson, R. G. Ohye, and G. E. Green, “Bioresorbable airway splint created with a three-dimensional printer,” N Engl J Med, vol. 368, no. 21, pp. 2043–2045, 2013.

N. Martelli et al., “Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review,” Surgery, vol. 159, no. 6, pp. 1485–1500, 2016.

K. Torabi, E. Farjood, and S. Hamedani, “Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature,” J Dent, vol. 16, no. 1, pp. 1–9, 2015.

DOI: https://doi.org/10.24050/19099762.n23.2018.1079

Métricas de artículo

Vistas de resumen

Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.


Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |