COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS

Jorge Cruz Duarte, Iván Amaya Contreras, Rodrigo Correa Cely

Resumen


This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times) of finding a better solution than UPSO, but with a higher dispersion rate (about five times). Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink and for different heat transfer rates.


Palabras clave


ropy generation minimisation; Global optimization algorithm; Microchannel heat sink; Optimal design

Texto completo:

PDF (English)

Referencias


Abdel-Raouf, O. and Abdel-Baset Metwally, M., (2013). "A Survey of Harmony Search Algorithm". International Journal of Computer Applications, vol. 70, No.28, pp.17–26.

Adham, A.M., Mohd-Ghazali, N. and Ahmad, R., (2014). "Optimization of a Rectangular Microchannel Heat Sink Using Entropy Generation Minimization (EGM) and Genetic Algorithm (GA)". Arabian Journal for Science and Engineering.

Adham, A.M., Mohd-Ghazali, N. and Ahmad, R., (2012). "Optimization of an ammonia-cooled rectangular microchannel heat sink using multi-objective non-dominated sorting genetic algorithm (NSGA2)". Heat and Mass Transfer, vol. 48, No.10, pp.1723–1733.

Adham, A.M., Mohd-Ghazali, N. and Ahmad, R., (2013). "Thermal and hydrodynamic analysis of microchannel heat sinks: A review". Renewable and Sustainable Energy Reviews, vol. 21, , pp.614–622.

Bejan, A., (1995). Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, New York: CRC press.

Chen, C.-T. and Chen, H.-I., (2013). "Multi-objective optimization design of plate-fin heat sinks using a direction-based genetic algorithm". Journal of the Taiwan Institute of Chemical Engineers, vol. 44, No.2, pp.257–265.

Chung, D.D.L., (2001). "Materials for thermal conduction". Applied Thermal Engineering, vol. 21, No.16, pp.1593–1605.

Clerc, M., (2006). Particle Swarm Optimization 1st ed., London: Wiley-ISTE.

Derrac, J. et al., (2011). "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms". Swarm and Evolutionary Computation, vol. 1, No.1, pp.3–18.

Farnam, D. et al., (2009). "Comparative Analysis of Microchannel Heat Sink Configurations Subject to a Pressure Constraint". Heat Transfer Engineering, vol. 30, No.1-2, pp.43–53.

Geem, Z.W., Kim, J.H. and Loganathan, G., (2001). "A New Heuristic Optimization Algorithm: Harmony Search". SIMULATION, vol. 76, No.2, pp.60–68.

Hamadneh, N. et al., (2013). "Design optimization of pin fin geometry using particle swarm optimization algorithm". PloS one, vol. 8, No.5, p.9.

Harper, C., (2004). Electronic Materials and Processes Handbook 3rd ed., New York: McGraw-Hill.

Hatami, M. and Ganji, D.D., (2014). "Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method". Energy Conversion and Management, vol. 78, , pp.347–358.

Karunanithi, A.K. and Hassanipour, F., (2014). "Multilayer minichannel heat sinks: The effect of porosity scaling on pressure drop". In 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry. ECI Symposium Series. Kona, Hawaii, USA, p. 6.

Kennedy, J. and Eberhart, R., (1995). "Particle swarm optimization". In Proceedings of ICNN’95 - International Conference on Neural Networks. Perth: IEEE, pp. 1942–1948.

Khan, W.A., Kadri, M.B. and Ali, Q., (2013). "Optimization of Microchannel Heat Sinks Using Genetic Algorithm". Heat Transfer Engineering, vol. 34, No.4, pp.279–287.

Khan, W.A. and Yovanovich, M.M., (2008). "Analytical Modeling of Fluid Flow and Heat Transfer in Microchannel/Nanochannel Heat Sinks". Journal of Thermophysics and Heat Transfer, vol. 22, No.3, pp.352–359.

Khan, W.A., Yovanovich, M.M. and Culham, J.R., (2006). "Optimization of microchannel heat sinks using entropy generation minimization method". In Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium. Dallas, TX, USA: IEEE, pp. 78–86.

Mahdavi, M., Fesanghary, M. and Damangir, E., (2007). "An improved harmony search algorithm for solving optimization problems". Applied Mathematics and Computation, vol. 188, No.2, pp.1567–1579.

Parsopoulos, K. and Vrahatis, M., (2004). "UPSO: A unified particle swarm optimization scheme". In Proceedings of the International Conference of "Computational Methods in Sciences and Engineering. Lecture Series on Computer and Computational Sciences. Zeist, The Netherlands: VSP International Science Publishers, pp. 868–873.

Parsopoulos, K.E. and Vrahatis, M.N., (2005). "Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems". In Advances in Natural Computation. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 582–591.

Rao, S.S., (2009). Engineering Optimization: Theory and Practice 4th ed., New Jersey: John Wiley & Sons, Inc.

Rimbault, B., Nguyen, C.T. and Galanis, N., (2014). "Experimental investigation of CuO–water nanofluid flow and heat transfer inside a microchannel heat sink". International Journal of Thermal Sciences, vol. 84, , pp.275–292.

Satpati, B., Koley, C. and Datta, S., (2014). "Robust PID controller design using particle swarm optimization-enabled automated quantitative feedback theory approach for a first-order lag system with minimal dead time". Systems Science & Control Engineering, vol. 2, No.1, pp.502–511.

Tuckerman, D.B. and Pease, R.F.W., (1981). "High-performance heat sinking for VLSI". IEEE Electron Device Letters, vol. 2, No.5, pp.126–129.

Yang, X.S., (2010). Engineering Optimization: An Introduction with Metaheuristic Application, Hoboken, NJ, USA: John Wiley & Sons, Inc.




DOI: https://doi.org/10.24050/reia.v0i0.687

Métricas de artículo

Vistas de resumen
67




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2017 Revista EIA

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.




 

 

 

 

 

UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |