EFECTO DE LA LONGITUD DEL MIEMBRO RESIDUAL SOBRE LA DISTRIBUCIÓN DE ESFUERZOS EN AMPUTADOS TRANSFEMORALES

Jaime Andrés Velez Zea, Liliana Bustamante Goez, Junes Abdul Villarraga Ossa

Resumen


Se construyeron cinco modelos de prótesis transfermorales compuestos por socket, muñón y fémur, se definió el porcentaje de miembro residual para cada individuo. Cada modelo correspondió a un voluntario al cual se le tomaron moldes de muñón y socket y tomografías del muñón. Las partes se digitalizaron en un modelo CAD y el ensamble se exportó a un software de análisis por elementos finitos.

 Se realizó un análisis de la marcha y se establece que las condiciones más críticas para las fuerzas de reacción suceden en la fase inicial de apoyo. Para esta fase se formuló un modelo estático y se calcularon las cargas sobre el socket a partir de las fuerzas de reacción en el piso.

 Se simularon en el software la fase de postura del socket, la fase de relajación y la fase final de carga, obteniéndose los valores y distribuciones de presiones y esfuerzos cortantes en la superficie del muñón para la fase de carga y los esfuerzos principales de von Mises para el fémur. Estos valores se relacionaron con los porcentajes de miembro residual para buscar relaciones y tendencias. Se encontró que existe una relación entre el porcentaje de miembro residual y las presiones en la superficie del muñón. 


Palabras clave


amputado transfemoral; esfuerzos; elementos finitos; prótesis

Referencias


Anon, MÓDULO DE AMPUTADOS. Available at: http://www.elportaldelasalud.com/modulo-de-amputados/2/ [Accessed October 1, 2014].

Derler, S., Schrade, U. & Gerhardt, L.-C., 2007. Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear, 263(7-12), pp.1112–1116. Available at: http://www.sciencedirect.com/science/article/pii/S0043164807003535 [Accessed October 1, 2014].

Duchemin, L. et al., 2008. Prediction of mechanical properties of cortical bone by quantitative computed tomography. Medical engineering & physics, 30(3), pp.321–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17596993 [Accessed September 29, 2014].

Faustini, M.C., Neptune, R.R. & Crawford, R.H., 2006. The quasi-static response of compliant prosthetic sockets for transtibial amputees using finite element methods. Medical engineering & physics, 28(2), pp.114–21. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15941666 [Accessed September 23, 2014].

Jia, X., Zhang, M. & Lee, W.C.C., 2004. Load transfer mechanics between trans-tibial prosthetic socket and residual limb--dynamic effects. Journal of biomechanics, 37(9), pp.1371–7. Available at: http://www.sciencedirect.com/science/article/pii/S0021929003004871 [Accessed September 23, 2014].

Kendall, M.A.F. et al., 2001. Comparison of the transdermal ballistic delivery of micro-particles into human and porcine skin. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 2991–2994. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1017423 [Accessed September 18, 2014].

Lee, W.C.C. et al., 2004. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Medical engineering & physics, 26(8), pp.655–62. Available at: http://www.researchgate.net/publication/8243493_Finite_element_modeling_of_the_contact_interface_between_trans-tibial_residual_limb_and_prosthetic_socket [Accessed September 29, 2014].

Lee, W.C.C. et al., 2004. Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket. The Journal of Rehabilitation Research and Development, 41(6), p.775. Available at: http://www.researchgate.net/publication/8047837_Finite-element_analysis_to_determine_effect_of_monolimb_flexibility_on_structural_strength_and_interaction_between_residual_limb_and_prosthetic_socket [Accessed October 1, 2014].

Lee, W.C.C. et al., Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket. Journal of rehabilitation research and development, 41(6A), pp.775–786.

Lee, W.C.C. & Zhang, M., 2007. Using computational simulation to aid in the prediction of socket fit: a preliminary study. Medical engineering & physics, 29(8), pp.923–9. Available at: http://www.sciencedirect.com/science/article/pii/S1350453306001925 [Accessed September 3, 2014].

Lin, C.-C. et al., 2004. Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model. Medical Engineering & Physics, 26(1), pp.1–9. Available at: http://www.medengphys.com/article/S1350453303001279/fulltext [Accessed September 23, 2014].

Peery, J.T. et al., 2006. A three-dimensional finite element model of the transibial residual limb and prosthetic socket to predict skin temperatures. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society, 14(3), pp.336–43. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17009493 [Accessed September 18, 2014].

Portnoy, S. et al., 2009. Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users. Journal of biomechanics, 42(16), pp.2686–93. Available at: http://www.sciencedirect.com/science/article/pii/S0021929009004746 [Accessed September 17, 2014].

Portnoy, S. et al., 2007. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting. Annals of biomedical engineering, 35(1), pp.120–35. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17120139 [Accessed October 1, 2014].

Silver-Thorn, M.B., Steege, J.W. & Childress, D.S., 1996. A review of prosthetic interface stress investigations. Journal of rehabilitation research and development, 33(3), pp.253–66. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8823673 [Accessed October 1, 2014].

Zachariah, S.. & Sanders, J.., 2000. Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact. Journal of Biomechanics, 33(7), pp.895–899. Available at: http://www.sciencedirect.com/science/article/pii/S0021929000000221 [Accessed October 1, 2014].

Zhang, M. et al., 1995. Development of a non-linear finite element modelling of the below-knee prosthetic socket interface. Medical Engineering & Physics, 17(8), pp.559–566. Available at: http://www.sciencedirect.com/science/article/pii/1350453395000025 [Accessed October 1, 2014].

Zhang, M. & Mak, a F., 1996. A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket--roles of interface friction and distal-end boundary conditions. IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society, 4(4), pp.337–46. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8973960.

Zhang, M. & Roberts, C., 2000. Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket. Medical engineering & physics, 22(9), pp.607–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11259929.

Zheng, Y.P., Mak, A.F. & Leung, A.K., State-of-the-art methods for geometric and biomechanical assessments of residual limbs: a review. Journal of rehabilitation research and development, 38(5), pp.487–504. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11732827 [Accessed October 1, 2014].




DOI: https://doi.org/10.24050/reia.v0i0.636

Métricas de artículo

Vistas de resumen
143




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2017 Revista EIA

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.




 

 

 

 

 

UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |