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ABSTRACT

The Resource Constrained Project Scheduling Problem (RCPSP) is a problem of great interest for the scientific community 
because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial 
processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that 
an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently, 
combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP), Scatter Search and Justification. 
The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken 
as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480 
instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The 
solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other 
researchers at international level, where a prominent place is obtained, according to Chen (2011).
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UN ALGORITMO HEURÍSTICO HÍBRIDO PARA LA SOLUCIÓN DEL 
PROBLEMA DE PROGRAMACIÓN DE TAREAS CON RECURSOS 

RESTRINGIDOS (RCPSP)

RESUMEN

El Problema de Programación de Tareas con Recursos Restringidos (RCPSP) es de gran interés para la comunidad 
científica debido a que, por su pertenencia a la clase de problemas NP–Hard, no se conocen métodos que lo resuelvan 
de manera exacta en tiempos de procesamiento polinomial. Por esta razón, se utilizan métodos heurísticos para resolverlo 
de manera eficiente aunque no garantizan la obtención de una solución óptima. En esta investigación se presenta un 
algoritmo heurístico híbrido para resolver eficientemente el RCPSP, combinando elementos de las heurísticas Procedimiento 
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de Búsqueda Adaptativa Aleatoria Agresiva (GRASP), Búsqueda Dispersa y Justificación. La eficiencia obtenida se mide 
por la presencia de los nuevos elementos agregados al algoritmo de base GRASP: Justificación y Búsqueda Dispersa. Los 
algoritmos se evalúan usando tres bases de datos de instancias del problema, así: 480 instancias de 30 actividades, 480 de 
60 y 600 de 120 actividades respectivamente, tomadas de la librería PSPLIB disponible en línea. Las soluciones obtenidas 
por el algoritmo desarrollado para las instancias de 30, 60 y 120 actividades se comparan con los resultados obtenidos por 
otros investigadores a nivel internacional, donde se obtiene un lugar prominente de acuerdo con Chen (2011).

PALABRAS CLAVES: programación de proyectos; RCPSP; heurística; GRASP; búsqueda dispersa; justificación.

UM ALGORITMO HEURÍSTICO HÍBRIDO PARA A SOLUCAO DO 
PROBLEMA DE PROGRAMACAO DE TAREFAS COM RECURSOS 

RESTRINGIDOS (RCPSP)
SUMáRIO

O   Problema   da   Programação   de  Tarefas   com  Recursos   Restringidos   (RCPSP)   é   um problema de 
grande interesse para a comunidade científica devido a que, por a sua pertença à classe de problemas NP–Hard, não 
conhecem-se métodos que os solucionam de maneira exata   em   tempos   de   processamento   polinomial.   Por   esta   
razão,   utilizam-se   métodos heurísticos para solucionar-o de maneira eficiente apesar de que não garantam a obtenção 
duma solução ótima. Nesta investigação apresenta-se um algoritmo heurístico híbrido para solucionar eficientemente o 
RCPSP, combinando elementos das heurísticas Procedimento de   Busca  Adatativa  Aleatória  Agressiva   (GRASP),   Busca   
Dispersa   e   Justificação.  A eficiência obteida conte-se por a presenca dos novos elementos agregados ao algoritmo 
de base GRASP: Justificação e Busca Dispersa. Os algoritmos avaliam-se usando três bases de dados de instâncias do 
problema, assim: 480 instâncias de 30 atividades, 480 de 60 e 600 de 120   atividades   respectivamente,   tomadas   da   
livraria   PSPLIB   disponível   on-line.  As soluções  obteidas   por  o   algoritmo   desenvolvido   para   as   instâncias  
de   30,  60   y  120 atividades comparam-se com os resultados obteidos por outros investigadores a nível internacional, 
onde obtem-se um lugar proeminente de acordo com Chen (2011).

PALAVRAS-CHAVE: Programação de projetos; RCPSP; Heurística; GRASP; Busca Dispersa; Justificação.

1. INTRODUCTION

A scheduling problem can be defined very 
broadly as the problem of organizing or sequencing a 
series of operations and locating them in time without 
violating any precedence and resource constraints 
imposed on the problem. The Resource Constrained 
Project Scheduling Problem (RCPSP) is a scheduling 
problem whose objective is to minimize the project 
completion time or makespan. There are two strategies 
for solving a scheduling problem: first, analytical 
algorithms, whose main characteristic is that they 
guarantee that an optimal solution is obtained, some 
of which are found in Deblaere, Demeulemeester and 
Herroelen (2011), Demeulemeester and Herroelen 
(1992; 1997), and second, heuristic algorithms that 
although they do not guarantee an optimal solution, 

they can produce solutions close to the optimal, in most 
cases, and in considerably less computational time.

This paper aims to present a new hybrid 
algorithm based on Greedy Randomized Adaptive 
Search Procedure (GRASP), improved with Scatter 
Search and Justification methods, and compare the 
results obtained with those of other algorithms used in 
solving the RCPSP.

2. DEFINITION OF THE RESOURCE 
CONSTRAINED PROJECT 
SCHEDULING PROBLEM (RCPSP)

Resource Constrained Project Scheduling 
Problem can be described mathematically as follows 
(Mingozzi, et al., 1998; Valls, Ballestín and Quintanilla, 
2005; Tseng and Chen, 2006):
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There is a set J={1,…,n} of activities (or 
jobs) which have to be processed. Every activity j∈J 
has a duration (processing time) dj. Moreover, the 
activities are interrelated by end-to-start precedence 
constraints, being Pj∈J\{j} the set of all the immediate 
predecessor activities of activity j, i.e., activities that 
must be completed before starting the execution of 
activity j. Assuming the Activity-On-Node (AON) 
representation, the precedence constraints can be 
represented by a directed acyclic graph G=(J,H), where 
H={(i,j)|i∈Pj,j∈J}. Additionally, there is a set K={1,…,m} 
of types of renewable resources, where each resource 
type k ∈ K has a total availability (capacity) Rk at each 
time interval of the scheduling period, i.e., the sum of 
the amount of resource type k used in the period t, Rk 
(t), should not exceed Rk for all t. Each activity j requires 
a constant amount, rjk, of units of resource type k during 
the entire time interval of its duration. It is assumed that 
rjk≤Rk for all j∈J and for all k∈K, in order to ensure the 
existence of feasible solutions. Resources occupied by 
an activity will not be released until it is completed and 
then, they may be occupied by other activities.

All quantities dj, rjk and Rk are non negative 
integers for all j and for all k; interrupting the processing 
of activities is not allowed and it is assumed that there 

are not setup times, or that they are included in the 
processing times.

The first and last activities, 1 and n, are fictitious 
activities used to represent the beginning and the end of 
the whole project: activity 1 must be completed before 
starting activities J\{1} and activity n can only start 
after the completion of activities J\{n}. In addition, it is 
assumed that d1=dn=0 and that r1k=rnk=0 for all k. It is 
also assumed, without loss of generality, that activities 
are topologically ordered, i.e., each predecessor of 
activity j has a smaller activity number than j.

The cost of a feasible solution is given by the 
project completion time (makespan). The aim is to find 
a schedule of activities s, for example, a series of feasible 
starting times (or completion times) for each activity 
(s1, s2, …, sn) where s1 = 0, such that precedence and 
resource constraints are satisfied and the solution cost, 
i.e. that makespan (T(s) = sn), is minimized.

Figure 1 shows an example of a graph 
representing a project consisting of eleven interrelated 
activities and three types of resources. Each node in the 
graph corresponds to an activity and the arcs represent 
the precedence relationships between activities. 

Figure 1. Graphic Example of a Project with Resource Constraints

From Mingozzi, et al. (1998)

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.
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Each activity (node) has a subscript that identifies 
it and it is located within the node. The number 
above the node represents the duration of the activity, 
and the numbers below the node correspond to the 
consumption of each of the three types of ordered 
renewable resources. As mentioned earlier, the first and 
the last activity are fictitious. Rk represents the availability 
of type of resource k.

This example will be used later in order to clarify 
some concepts about the operation of the algorithm 
developed in this research.

3.  MATHEMATICAL FORMULATION

A way to formulate the RCPSP described in 
the preceding section, using integer programming is 
presented by Mingozzi et al. (1998):

  (1)

Subject to:.

  (2)

 (3)

    (4)

  (5)

Where:

εjt: Binary decision variables are equal to 1 if and only 
if the activity j starts at the beginning of period t.

lsj: Late start time of activity j.

esj: Early start time of activity j.

t: Each of the periods of the planning horizon of the 
project.

σ(t,j)=max (0,t-dj+1).

Tmax: Upper bound on the project completion time. It 
can be easily computed as Tmax=∑j∈Jdj .

In this approach two activities are always 
considered artificial or fictitious (dummy jobs), which are 
the first one and the last one (1 and ), with zero duration 
and zero consumption of all resources. The purpose of 
these activities is to represent a single starting point and 
a single completion point of the project, respectively.

Equation (1) is the objective function: makespan 
or project completion time.

Equations (2) represent the non-preemption 
constraints, i.e., those that require that an activity, once 
initiated, must continue until its completion.

Inequalities (3) represent precedence constraints: 
an activity can only start after completion of all its 
predecessors.

Inequalities (4) represent resource constraints: 
In any period, the amount of resources used by all 
running activities must not exceed the availability of 
each corresponding resource.

Expressions (5) indicate that the decision 
variables εjt, are binary variables whose possible values 
are zero or one. These variables are equal to one (1) if 
and only if activity j begins in period t; otherwise, they 
are equal to zero (0)

It is easy to find a solution to the problem by 
means of any mixed integer linear programming (MILP) 
software, but there is a great deterioration of runtime 
when increasing the number of activities. Although 
the constraints (2), (3) and (4) are easy to formulate, it 
should be borne in mind that in each set of them there 
may be hundreds or even thousands of constraints for 
not very large instances.

The MILP approach is useful to understand what 
the problem is and to obtain theoretical conclusions. An 
additional feature of this approach is that lower bounds 
can be obtained using relaxation techniques (discarding 
some constraints).

The RCPSP treated in this research, is not the 
most general problem, since the it uses deterministic 
activity durations and renewable resources (non-
renewable resources are not considered) and take 
into account only one way to perform the activities (as 
opposed to the multimodal case), among other features. 
In this paper, the instances analyzed are composed of 
30, 60 and 120 activities and four types of resources as 
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in Coelho and Vanhoucke (2011), Agarwal, et al. (2011), 
and Chen (2011). The search for efficient methods 
of solution is still of great interest to the scientific 
community due to the fact that it belongs to the class 
of NP-Hard problems (Blazewicz, Lenstra and Rinnooy, 
1983; Ducker and Knust, 2006) and this makes it a very 
difficult problem to solve for which no efficient exact 
solution algorithms have been found. Instances with 
more than 60 activities show a high level of complexity 
because of its combinatorial nature (Valls, Ballestín and 
Quintanilla, 2005).

4. HEURISTIC METHODS

The model presented in the previous section 
can be solved through analytical techniques, such 
as MILP, which guarantee an optimal solution, but 
which are not feasible in practice because of their high 
processing time. Therefore, it is necessary to resort to 
the so-called heuristic methods that, although do not 
guarantee optimal solutions, provide a more intuitive 
understanding of the problem and make it possible to 
reach, in considerably less time, solutions that are usually 
fairly close to the optimal one.

The most general idea of the term heuristic is 
related to the task of solving real problems intelligently 
using the available knowledge. Heuristic method is 
the appropriate term for those procedures that, using 
common sense, experience or knowledge about a 
problem and about applicable techniques, tries to 
find solutions using a reasonable amount of resources 
(usually computation time). According to Brito, et 
al. (2004) heuristic methods can be used to solve 
optimization problems, where besides the restrictions 
that must be met by the feasible solutions, an objective 
function must be evaluated to measure the quality of 
the solution.

Some of the heuristic methods used for solving 
the RCPSP are Genetic Algorithms, Evolutionary 
Algorithms, GRASP, Tabu Search, Simulated Annealing, 
Scatter Search, Random Search and Ant Colony 
Systems, among others (Chen, et al., 2010; Peteghem 
and Vanhoucke, 2010; Montoya-Torres, et al., 2010). In 
this paper a hybrid algorithm which combines concepts 
of GRASP, Scatter Search and Justification is used. The 

latter is an emerging method for solving scheduling 
problems that has shown very good results.

5. PROPOSED ALGORITHM

The algorithm proposed in this research for 
solving the RCPSP is based on the GRASP method which 
is a heuristic method to find approximate solutions for 
combinatorial optimization problems, on the basis of the 
premise that different and good quality initial solutions 
play an important role in the success of local search 
methods (Pesek, Schaerf and Zerovnik, 2007).

A GRASP algorithm is a multi-start method, in 
which each iteration consists of a phase of construction 
of a greedy randomized solution followed by an 
improvement phase, using the built solution as the 
starting point for improvement (Anagnostopoulos 
and Koulinas, 2012). In the improvement phase it is 
very common to use a simple local search algorithm; 
however, in this research two algorithms are used: 
the first one, known as justification, is a method 
specifically developed for the RCPSP (Valls, Ballestín 
and Quintanilla, 2005; Chen, 2011), and the second 
one is a based-population algorithm called scatter 
search (Ranjbar and Kianfar, 2009; Shi, et al., 2010). The 
proposed algorithm is summarized by the pseudocode 
depicted in Figure 2.

For a more precise description of the methodology 
used, the following topics will be tackled: way of 
representing a solution, construction phase, phase 1 of 
improvement (heuristic justification), characterization of 
the population of solutions, and phase 2 of improvement 
(scatter search).

5.1  Ways of Representing a Solution

Figure 2. Pseudocode of the proposed algorithm.

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.
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In order to implement the heuristic strategies 
chosen, two different methods of representation are 
used: activity list and priority values.

In the activity list, each solution is represented 
by a list where all the project activities are placed 
according to the scheduling order. Figure 3 shows an 
example of the activity list for the project of Figure 1.

The activity list in Figure 3 indicates that the 
first activity to be scheduled is activity 1, followed by 
activity 2; then, activity 7 and so on, according to the 
order in which they are arranged in the list. Activities 
1 and 11 are not present in the solution given the 
fact that, being fictitious (beginning and end of the 
project), they have a duration of zero time units. 
The solution obtained from the activity list appears 
in the Gantt chart at the bottom of Figure 3. Each 
activity is scheduled in the earliest possible starting 
time without delaying the other activities already 
scheduled, taking into account both precedence 
and resource constraints; that is, by definition, an 
active schedule. Then, activity 2 is scheduled at time 
0 since it does not have predecessors, then activity 
7 is scheduled simultaneously since it does not have 
predecessors either and resources are available 
for both; now, activity 3 should be scheduled and, 
although it does not have predecessors, it can not be 
scheduled on time zero since the resources are not 
enough, then activity 3 is scheduled after the end of 
activities 2 or 7 when resources are available again. 
In this way the remaining activities are scheduled. 
For scheduling problems with regular objective 
functions, such as minimizing the makespan, the 
optimal solution will always be in all active schedules 
(Sprecher, Kolisch and Drexl, 1995, cited in Kolisch 
and Hartmann, 1999).

In the solution in Figure 3, activities 2 and 7 can 
run simultaneously at the beginning of the project. Due 
to resource constraints, activities 3 and 4 can be run 
only when resources are released after the completion 
of activities 2 and 7. Activity 6 can be run only after 
completion of activity 3 due to precedence constraints 
(as well as to resource constraints).

The above implies that for some activity i, its 
starting time could be prior to that of any other activity 
that is in a previous position in the activity list. For 
example, activity 9 is scheduled after having scheduled 

activities 8 and 10; however its starting time is prior to 
the starting time of such activities; this may be due to its 
consumption of fewer resources. For more information 
about the activity list representation, the reader is 
referred to Kolisch and Hartmann (1999) and Debels, 
et al. (2004).

Each solution represented by the activity list 
can be transformed into a representation using priority 
values, which is a modification proposed in Debels, et al. 
(2004) of the form of representation known as random 
key. Figure 4 shows an example of activity list in Figure 
3 represented by priority values.

According to the priority values in Figure 4, the 
first activity to be scheduled is activity 1, which has the 
highest priority, followed by activity 2; in third place, 
activity 7; in fourth place, activity 3, and so forth. 

It is possible to use two representation methods 
in the same algorithm without causing inefficiency 
since it is very easy to transform the solution from a 
representation method to another. The transformation 
of the activity list representation into the priority value 
representation can be carried out using the algorithm 
represented by the pseudocode in Figure 5.

Similarly, the pseudocode in Figure 6 shows the 
procedure to transform the priority value representation 
into the activity list representation.

Figure 3. Example of Activity List Representation

Figure 4. Example of Priority Values Representation
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5.2  Constructive Phase

In the constructive phase, a greedy randomized 
procedure is carried out to generate multiple solutions 
that are different among them. This procedure involves 
selecting all the activities that can be scheduled in a 
given period t, taking into account their feasibility due 
to precedence and resource constraints. These activities 
are called eligible. Then, among all these eligible 
activities, the best ones are selected, defining as the 
best one that activity that uses the highest quantity of 
resources, as follows:

 (6)

Being A(t) the set of activities that are already 
scheduled and active at period t.

The variable resourcesi is an indicator of the 
resource use that would cause activity i if it were 
scheduled in a given period, t.

The number of activities considered as candidates 
depends directly on the quality of each one, as follows 
(Glover and Kochenberger, 2003):

Let c(e) be the use of resources of the eligible 
activity e. A list of candidate activities is created as 
follows (Restricted Candidate List: RCL):

	 RCL={e∈C|c(e)≥cmin+α(cmax-cmin )}	 (7)

Where:

C: Set of eligible activities

cmin: Minimum use of resources by one of the eligible 
activities, min{c(e)|e∈C}.

cmax: Maximum use of resources by one of the eligible 
activities, max{c(e)|e∈C}.

α:  Parameter that controls the values c(e) accepted 
as candidates (α∈[0,1]).

Then, an activity is chosen randomly from the 
candidate list in order to be scheduled and such list 
is updated. The procedure is repeated as long as the 
candidate activity set is not empty.

When none of the activities can be scheduled, 
that is the eligible activity set is empty, the scheduling 
time is put forward to the minimum completion time 

of the running activities. Then, the eligible activity list 
is updated.

Notice that if α=0, all eligible activities become 
automatically candidate activities. Therefore, the 
method would be equivalent to a totally random 
selection. If α=1, only the activities with resource use 
being higher than or equal to all other activities are 
candidates. Then, the method would be equivalent to 
a greedy construction.

The result of this constructive phase is a solution 
s, represented by an activity list, which will be then right-
justified using the procedure explained below.

5.3  Improvement Phase 1:  
Justification Heuristic

Once an initial solution is built, an improvement 
is carried out using the justification procedure 
described below (Valls, Ballestín and Quintanilla, 
2005, and Xu, et al., 2008).

In a solution or schedule S, as defined 
previously, the right justification of an activity j≠n 
involves obtaining a schedule S' so that s'i=si for 
i≠j, making s'j≥sj with s'j as large as possible, without 
increasing the makespan. In a schedule S, the 
right justification of activities j in decreasing order 
regarding its completion time (fj=sj+dj) generates 
an active schedule to the right, SR, called right 
justification. SR is not the only one, since it depends 
on the used tiebreaker rule(s). In this research, as a 

Figure 5. Pseudocode of the procedure to transform the 
representation of activity list solution into priority value.

Figure 6. Pseudocode of the procedure to transform the 
representation of priority value solution into activity list.

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.
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tiebreaker rule, the selection of the activity with the 
highest priority number in the list of activities is used.

The previous procedure guarantees that the new 
solution obtained has a lower or equal makespan than 
that of the solution before justification. There is also a 
procedure to carry out the left justification, but it is not 
considered in this research.

5.4  Characterization of the Population 
of Solutions

The solutions resulting from both the constructive 
phase and the justification are taken to a solution set 
(reference set or population) to carry out phase 2 of 
improvement: Scatter Search.

In order to obtain this population of solutions, 
it has to be taken into account that, as the search 
progresses, solutions belonging to the population must 
be changing to add diversification, and that there should 
not be repeated solutions; in order to control that, two 
filters are applied.

The first filter is the makespan value. If the 
makespan of two solutions is different, both solutions 
have to be different. If the makespan of two solutions is 
the same, the second filter must be evaluated computing 
the following indicator:

  IS=∑j∈J sj   (8)

If there are two solutions with different IS value, 
it can be concluded that the two solutions are different; 
but if the IS value of the two solutions is the same, it does 
not mean necessarily that the solutions are the same, 
although it is very likely that this is the case. However, 
in this research, due to efficiency reasons, whenever 
two solutions have the same makespan and the same 
IS value, we assume that the solutions are the same and 
one of them is ruled out.

In order to allow for diversification in the 
population, after each Scatter Search iteration 
(described next), some solutions of the population are 
eliminated in order to be replaced by new solutions 
generated in the constructive and justification phases. 
The eliminated solutions correspond to the lower quality 
solutions (higher makespan) of the population.

5.5  Improvement Phase 2: Scatter Search

The so-called evolutionary methods are among 
the most known heuristic methods and the most used 
to solve the RCPSP. These methods are based on the 
generation, selection, combination and replacement 
of a solution set. Genetic algorithms, scatter search, 
path relinking and memetic algorithms are part of this 
group of methods.

The Scatter Search is a procedure based on 
formulations and strategies introduced in the sixties. The 
basic concepts of the method were introduced by Glover 
(1977) based on the strategies to combine decision rules 
in sequencing problems and on the combination of 
constraints of the surrogate constraint method.

The scatter search is based on maintaining a 
solution set, called reference set, and carrying out 
combinations with those solutions. But, unlike genetic 
algorithms, it is not based on randomization on a 
relatively large solution set, but on systematic and 
strategic selections from a small set.

The scatter search is based on combining the 
solutions appearing in the so-called reference set 
(equivalent to the population of a genetic algorithm). 
In this set are the good solutions that have been found. 
It is worth mentioning that the meaning of good is not 
restricted to the quality of the solution, but the diversity 
contributed by the solution to the set is also considered. 
One of the most important characteristics of the scatter 
search is that it involves integrating the combination of 
solutions with the local search.

The scatter search consists basically of the 
following elements:

Generator of diverse solutions: The method 
involves generating a set P of diverse solutions from 
which a small subset of cardinality b is selected, called 
reference set, in order to carry out the combinations. 
The selection criterion used involves obtaining quality 
solutions that are different from each other (quality and 
diversity). The solutions of the set P are ranked from best 
to worst, regarding their quality.

Different operations are carried out with the set 
P, namely:

•	 Creation.	 The	 reference	 set	 starts	 with	 the	 b* 
(0<b*<b) best solutions of P. The remaining 
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b-b* are extracted from P using the maximum 
distance criterion (Laguna et. al, 2012) with the 
solutions already included in the reference set. 
In the algorithm developed in this research, at 
each iteration, solutions b-b* are replaced by new 
solutions created with the randomized constructive 
method described before.

Updating. Solutions result ing from the 
combinations can enter to the reference set and replace 
some of the solutions already included if the former 
improve the latter.

Combination method: The scatter search is 
based on combining all solutions of the reference set. 
For this, subsets consisting of two or more elements of 
the reference set are considered and combined using 
a routine designed for this purpose. The solution or 
solutions obtained from this combination can be 
immediately introduced in the reference set (dynamic 
updating) or temporarily stored in a list until the 
process of carrying out all combinations is completed 
and then, to see which solutions can enter to this set 
(static updating).

In this research, static updating was used and 
solutions were combined using the following procedure:

Having each solution represented by priority 
values, the following formula is applied to each activity 
of a couple of solutions of the reference set.

 γ( j ) =αγA ( j )+( 1 - α	) γB ( j ) (9)

Then, the γ(j) values must be fixed in order to turn 
them into the integer corresponding to their order and 
belonging to J, so that the new solution can be represented 
using priority values.

Improvement method: Typically, it is a local 
search method to improve solutions of the reference 
set as well as the combined ones before considering 
their inclusion in such set. It is worth mentioning that 
in those implementations where no feasible solutions 
are used, which is not the case in this work, this method 
must be able to obtain a feasible solution from one 
that is not feasible. If the method cannot improve the 
initial solution, the result is considered to be the same 
initial solution.

In this research, the local search was replaced 
by the justification method mentioned above. This 

means that the justification procedure is carried out 
in two different points of the algorithm as a way to 
improve the constructive phase and once the scatter 
search is completed.

6. RESULTS

In order to evaluate the efficiency of the 
algorithm, three data bases of instances of the problem 
were used: 480 instances of 30 activities, 480 of 60, and 
600 of 120 activities respectively, taken from the PSPLIB 
library available online (Kolisch and Sprecher, 2004).

The solutions obtained by the developed algorithm 
for the instances of 30, 60 y 120 activities and four 
resources are compared with results obtained by other 
researchers at international level, where prominent 
places are obtained, according to Chen (2011), Tables 
2, 3 and 4 for 30, 60 and 120 activities, respectively. The 
comparison of the results is made as follows: for problems 
of 30 activities, with the known optimum makespan 
values, available in the PSPLIB library; for problems of 
60 and 120 activities, whose optimum makespan values 
are not known, the results are compared with the critical 
path lower bound as used by most of researchers.

An Intel core i3 processor of 2.53 GHz and 3 GB 
of RAM memory was used to run the algorithm. The 
methods were implemented in Visual Basic 6.0.

The algorithm efficiency is measured as the 
percentage of average deviation regarding the 
optimum makespan or lower bound as a function 
of the maximum number of solutions (schedules) 
necessary to find such deviation.

This measure has been developed in order to 
eliminate the disadvantage posed by the processing 
time, which depends on both the processor and 
language features. According to Kolisch and 
Hartmann (2005), this measure is based on the 
hypothesis that the computational effort to build 
a solution (schedule) is similar for most heuristic 
algorithms.

In order to evaluate the efficiency of each 
component of the algorithm, results with the different 
phases of the algorithm are presented: In table 1, 
first, the randomized solutions generated in the 
constructive phase of the algorithm (corresponding to 
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Table 1. Percentage of Average Deviation Regarding the Optimum Makespan vs. Maximum Number of Schedules for 
Problems ff 30 Activities.

Method
Maximum number of schedules

1.000 5.000 50.000
GRASP 1,793% 1,538% 1,298%
GRASP + Just. 0,573% 0,470% 0,336%
GRASP + Just. + SS 0,609% 0,440% 0,291%

According to Table 3, for problems of 60 activities, the algorithm developed in this research is ranked in position 16th for 1.000 schedules, 17th for 5.000 schedules 
and 15th for 50.000 schedules.

Table 2. Results Collected from Different Researches Around the World. J30

Algorithm SGS Author(s) Schedule limits
  1.000 5.000 50.000

GA, TS – path relinking Both Kochetov and Stolyar 0,1 0,04 0,0
Scatter search – FBI Serial Debels, et al. 0,27 0,11 0,01
GA – hybrid, FBI Serial Valls, et al. 0,27 0,06 0,02
GA – FBI Serial Valls, et al. 0,34 0,2 0,02
GA – forw.–backw., FBI Both Alcaraz, et al. 0,25 0,06 0,03
GA – forw.–backw. Serial Alcaraz and Maroto 0,33 0,12 –
JPSO Serial Chen, Ruey-Maw 0,29 0,14 0,04
Sampling – LFT, FBI Both Tormos and Lova 0,25 0,13 0,05
TS – activity list Serial Nonobe and Ibaraki 0,46 0,16 0,05
Sampling – LFT, FBI Both Tormos and Lova 0,3 0,16 0,07
GA – self-adapting Both Hartmann 0,38 0,22 0,08
GA – activity list Serial Hartmann 0,54 0,25 0,08
Sampling – LFT, FBI Both Tormos and Lova 0,3 0,17 0,09
TS – activity list Serial Klein 0,42 0,17 –
Sampling – random, FBI Serial Valls, et al. 0,46 0,28 0,11
SA – activity list Serial Bouleimen and Lecocq 0,38 0,23 –
GA – late join Serial Coelho and Tavares 0,74 0,33 0,16
GRASP-JUST-SS Serial This study 0,57 0,39 0,23
TS – schedule scheme Related Baar et al. 0,86 0,44 –
Sampling – adaptive Both Kolisch and Drexl 0,74 0,52 –
GA – random key Serial Hartmann 1,03 0,56 0,23
Sampling – LFT Serial Kolisch 0,83 0,53 0,27
Sampling – global Serial Coelho and Tavares 0,81 0,54 0,28
Sampling – random Serial Kolisch 1,44 1,0 0,51
GA – priority rule Serial Hartmann 1,38 1,12 0,88
Sampling – WCS Parallel Kolisch 1,4 1,28  –
Sampling – LFT Parallel Kolisch 1,4 1,29 1,13
Sampling – random Parallel Kolisch 1,77 1,48 1,22
GA – problem space Mod. par. Leon and Ramamoorthy 2,08 1,59 –

           Source. Adapted by the authors of Chen (2011, Table 5). 

Finally, according to Table 4, for problems of 120 activities, the algorithm developed in this research is ranked in position 12th for 1.000 schedules, position 15th for 
5.000 schedules and position 14th for 50.000 schedules.
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Table 3. Results Collected from Different Researches Around the World. J60

Algorithm SGS Author(s) Schedule limits
   1.000 5.000 50.000

Scatter search – FBI Serial Debels, et al. 11,73 11,10 10,71
GA – hybrid, FBI Serial Valls, et al. 11,56 11,10 10,73
GA, TS – path relinking Both Kochetov and Stolyar 11,71 11,17 10,74
GA – FBI Serial Valls et al. 12,21 11,27 10,74
GA – forw.–backw., FBI Both Alcaraz, et al. 11,89 11,19 10,84
JPSO Serial Chen, Ruey-Maw 12,03 11,43 11,00
GA – self-adapting Both Hartmann 12,21 11,70 11,21
GA – activity list Serial Hartmann 12,68 11,89 11,23
Sampling – LFT, FBI Both Tormos and Lova 11,88 11,62 11,36
Sampling – LFT, FBI Both Tormos and Lova 12,14 11,82 11,47
GA – forw.–backw. Serial Alcaraz and Maroto 12,57 11,86 –
Sampling – LFT, FBI Both Tormos and Lova 12,18 11,87 11,54
SA – activity list Serial Bouleimen and Lecocq 12,75 11,90 –
TS – activity list Serial Klein 12,77 12,03 –
TS – activity list Serial Nonobe and Ibaraki 12,97 12,18 11,58
Sampling – random, FBI Serial Valls, et al. 12,73 12,35 11,94
Sampling – adaptive Both Schirmer 12,94 12,58 –
GA – late join Serial Coelho and Tavares 13,28 12,63 11,94
GRASP-JUST-SS Serial This study 12,88 12,42 11,96
GA – random key Serial Hartmann 14,68 13,32 12,25
GA – priority rule Serial Hartmann 13,30 12,74 12,26
Sampling – adaptive Both Kolisch and Drexl 13,51 13,06 -
Sampling – WCS Parallel Kolisch 13,66 13,21  –
Sambpling – global Serial Coelho and Tavares 13,80 13,31 12,83
Sampling – LFT Serial Kolisch 13,59 13,23 12,85
TS – schedule scheme Related Baar, et al. 13,80 13,48 –
GA – problem space Mod. par. Leon and Ramamoorthy 14,33 13,49 –
Sampling – LFT Serial Kolisch 13,96 13,53 12,97
Sampling – random Parallel Kolisch 14,89 14,30 13,66
Sampling – random Serial Kolisch 15,94 15,17 14,22

Source. Adapted by the authors of Chen (2011, Table 7).

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.



98

A hybrid heuristic Algorithm for solving the resource constrAined project scheduling problem (rcpsp)

Revista EIA    Rev.EIA.Esc.Ing.Antioq /  Publicación semestral Escuela de Ingeniería de Antioquia —EIA—

Table 4. Results Collected from Different Researches Around the World. J120

Algorithm SGS Author(s) Schedule limits
   1.000 5.000 50.000

GA – hybrid, FBI Serial Valls, et al. 34,07 32,54 31,24
GA – forw.–backw., FBI Both Alcaraz, et al. 36,53 33,91 31,49
Scatter search – FBI Serial Debels, et al. 35,22 33,10 31,57
GA – FBI Serial Valls, et al. 35,39 33,24 31,58
GA, TS – path relinking Both Kochetov and Stolyar 34,36 33,36 32,06
Population –based – FBI Serial Valls, et al. 35,18 34,02 32,81
JPSO Serial Chen, Ruey-Maw 35,71 33,88 32,89
GA – self-adapting Both Hartmann 37,19 35,39 33,21
Sampling – LFT, FBI Both Tormos and Lova 35,01 34,41 33,71
Ant system Serial Merkle, et al. - 35,43 -
GA – activity list Serial Hartmann 39,37 36,74 34,03
Sampling – LFT, FBI Both Tormos and Lova 36,24 35,56 34,77
Sampling – LFT, FBI Both Tormos and Lova 36,49 35,81 35,01
GA – forw.–backw. Serial Alcaraz and Maroto 39,36 36,57 –
TS – activity list Serial Nonobe and Ibaraki 40,86 37,88 35,85
GRASP-JUST-SS Serial This study 38,16 37,30 36,32
GA – late join Serial Coelho and Tavares 39,97 38,41 36,44
Sampling – random, FBI Serial Valls, et al. 38,21 37,47 36,46
SA – activity list Serial Bouleimen and Lecocq 42,81 37,68 –
GA – priority rule Serial Hartmann 39,93 38,49 36,51
Sampling – adaptive Both Schirmer 39,85 38,70 –
Sampling – LFT Parallel Kolisch 39,60 38,75 37,74
Sampling – WCS Parallel Kolisch 39,65 38,77  –
GA – random key Serial Hartmann 45,82 42,25 38,83
Sampling – adaptive Both Kolisch and Drexl 41,37 40,45 –
Sampling – global Serial Coelho and Tavares 41,36 40,46 39,41
GA – problem space Mod. par. Leon and Ramamoorthy 42,91 40,69 –
Sampling – LFT Serial Kolisch 42,84 41,84 40,63
Sampling – random Parallel Kolisch 44,46 43,05 41,44
Sampling – random Serial Kolisch 49,25 47,61 45,60

the GRASP method) are considered individually, then, 

these initial randomized solutions are considered 

with a subsequent phase of improvement using 

justification (corresponding to the so-called GRASP 

+ Just. method); finally, the whole algorithm is used, 

i.e., adding an improvement phase with Scatter 

Search, (SS), corresponding to the GRASP + Just. 

+ SS method.

Table 1 shows the results obtained for problems 

of 30 activities, on the basis of the measures presented 

in Kolisch and Hartmann (2005).

Tables 2, 3 and 4 based on Chen (2011), show 

data obtained by the most advanced researchers around 

the world, who work with 480 problems of 30 activities, 

480 of 60 and 600 of 120 activities taken from PSPLIB.

Source. Adapted by the authors of Chen (2011, Table 9).
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According to Table 2, for problems of 30 
activities, the algorithm developed in this research is 
ranked in position 17th for 1.000 schedules, position 
18th for 5.000 schedules and position 15th for 50.000 
schedules. 

It can also be noted that in Tables 2, 3 and 4, 
that this study is the only one that uses GRASP and one 
of the only two studies that uses Scatter Search.

7. CONCLUSIONS

This research confirms the good performance 
obtained using the Justification heuristics as a 
complement of any heuristic method for the RCPSP. 
The use of this heuristics improved around 68% the 
results obtained before its implementation.

Besides, it was confirmed that the use of 
additional elements in the algorithm improves its 
performance, which does not always happen.

Compared with the results obtained by other 
researchers, the developed algorithm finds good 

results. This can be confirmed because in the list 
presented in Chen (2011) the developed algorithm is 
superior to others in the list. This is so in spite of the 
simplicity of this algorithm due to the absence of local 
search procedures and of the poor presence of Scatter 
Search on the list of algorithms.

8.  FUTURE WORK

The present research gives rise to the following 
lines of work for future research:

•	 To improve the algorithm presented here using 

different methods to generate and combine 

solutions.

•	 To design hybrid algorithms using other methodologies 

like Local Search, Simulated Annealing, Tabu Search 

and Path Relinking, among others.

•	 To design adaptive strategies that allow for the 

modification of parameters such as size variation of 

the reference set and the parameters necessary to 

create and combine solutions.
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