
A HYBRID HEURISTIC ALGORITHM FOR SOLVING THE
RESOURCE CONSTRAINED PROJECT SCHEDULING

PROBLEM (RCPSP)

Juan Carlos rivera*

luis Fernando Moreno v.**

FranCisCo Javier díaz s.***

Gloria elena Peña z.****

ABSTRACT

The Resource Constrained Project Scheduling Problem (RCPSP) is a problem of great interest for the scientific community
because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial
processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that
an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently,
combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP), Scatter Search and Justification.
The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken
as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480
instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The
solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other
researchers at international level, where a prominent place is obtained, according to Chen (2011).

KEYWORDS: Project Scheduling; RCPSP; Heuristic; GRASP; Scatter Search; Justification.

UN ALGORITMO HEURÍSTICO HÍBRIDO PARA LA SOLUCIÓN DEL
PROBLEMA DE PROGRAMACIÓN DE TAREAS CON RECURSOS

RESTRINGIDOS (RCPSP)

RESUMEN

El Problema de Programación de Tareas con Recursos Restringidos (RCPSP) es de gran interés para la comunidad
científica debido a que, por su pertenencia a la clase de problemas NP–Hard, no se conocen métodos que lo resuelvan
de manera exacta en tiempos de procesamiento polinomial. Por esta razón, se utilizan métodos heurísticos para resolverlo
de manera eficiente aunque no garantizan la obtención de una solución óptima. En esta investigación se presenta un
algoritmo heurístico híbrido para resolver eficientemente el RCPSP, combinando elementos de las heurísticas Procedimiento

* PhD. en Ingeniería. Université de Technologie de Troyes (UTT), ICD-LOSI, Francia.
** Profesor Universidad Nacional de Colombia, sede Medellín. Facultad de Minas. Medellín, Colombia.
*** PhD. Profesor Asociado Universidad Nacional de Colombia – Sede Medellín. Facultad de Minas. Medellín, Colombia.
**** Doctor en Ingeniería de Organización. Profesor Universidad Nacional de Colombia – Sede Medellín. Medellín, Colombia.

Revista EIA, ISSN 1794-1237 / Año X / Volumen 10 / Número 20 / Julio-Diciembre 2013 / pp. 87-100
Publicación semestral de carácter técnico-científico / Escuela de Ingeniería de Antioquia —EIA—, Medellín (Colombia)

Historia del artículo:
Artículo recibido: 13-III-2013 / Aprobado: 24-VII-2013
Discusión abierta hasta diciembre 2014

Autor de correspondencia: (L.F. Moreno-V.). Carrera 49 75
Sur 50, Medellín, Colombia. Teléfono: 426 19 50.
Correo electrónico: rivera_@utt.fr

DOI: http:/dx.doi.org/10.14508/reia.2013.10.20.87-100

88

A hybrid heuristic Algorithm for solving the resource constrAined project scheduling problem (rcpsp)

Revista EIA Rev.EIA.Esc.Ing.Antioq / Publicación semestral Escuela de Ingeniería de Antioquia —EIA—

de Búsqueda Adaptativa Aleatoria Agresiva (GRASP), Búsqueda Dispersa y Justificación. La eficiencia obtenida se mide
por la presencia de los nuevos elementos agregados al algoritmo de base GRASP: Justificación y Búsqueda Dispersa. Los
algoritmos se evalúan usando tres bases de datos de instancias del problema, así: 480 instancias de 30 actividades, 480 de
60 y 600 de 120 actividades respectivamente, tomadas de la librería PSPLIB disponible en línea. Las soluciones obtenidas
por el algoritmo desarrollado para las instancias de 30, 60 y 120 actividades se comparan con los resultados obtenidos por
otros investigadores a nivel internacional, donde se obtiene un lugar prominente de acuerdo con Chen (2011).

PALABRAS CLAVES: programación de proyectos; RCPSP; heurística; GRASP; búsqueda dispersa; justificación.

UM ALGORITMO HEURÍSTICO HÍBRIDO PARA A SOLUCAO DO
PROBLEMA DE PROGRAMACAO DE TAREFAS COM RECURSOS

RESTRINGIDOS (RCPSP)
SUMáRIO

O Problema da Programação de Tarefas com Recursos Restringidos (RCPSP) é um problema de
grande interesse para a comunidade científica devido a que, por a sua pertença à classe de problemas NP–Hard, não
conhecem-se métodos que os solucionam de maneira exata em tempos de processamento polinomial. Por esta
razão, utilizam-se métodos heurísticos para solucionar-o de maneira eficiente apesar de que não garantam a obtenção
duma solução ótima. Nesta investigação apresenta-se um algoritmo heurístico híbrido para solucionar eficientemente o
RCPSP, combinando elementos das heurísticas Procedimento de Busca Adatativa Aleatória Agressiva (GRASP), Busca
Dispersa e Justificação. A eficiência obteida conte-se por a presenca dos novos elementos agregados ao algoritmo
de base GRASP: Justificação e Busca Dispersa. Os algoritmos avaliam-se usando três bases de dados de instâncias do
problema, assim: 480 instâncias de 30 atividades, 480 de 60 e 600 de 120 atividades respectivamente, tomadas da
livraria PSPLIB disponível on-line. As soluções obteidas por o algoritmo desenvolvido para as instâncias
de 30, 60 y 120 atividades comparam-se com os resultados obteidos por outros investigadores a nível internacional,
onde obtem-se um lugar proeminente de acordo com Chen (2011).

PALAVRAS-CHAVE: Programação de projetos; RCPSP; Heurística; GRASP; Busca Dispersa; Justificação.

1. INTRODUCTION

A scheduling problem can be defined very
broadly as the problem of organizing or sequencing a
series of operations and locating them in time without
violating any precedence and resource constraints
imposed on the problem. The Resource Constrained
Project Scheduling Problem (RCPSP) is a scheduling
problem whose objective is to minimize the project
completion time or makespan. There are two strategies
for solving a scheduling problem: first, analytical
algorithms, whose main characteristic is that they
guarantee that an optimal solution is obtained, some
of which are found in Deblaere, Demeulemeester and
Herroelen (2011), Demeulemeester and Herroelen
(1992; 1997), and second, heuristic algorithms that
although they do not guarantee an optimal solution,

they can produce solutions close to the optimal, in most
cases, and in considerably less computational time.

This paper aims to present a new hybrid
algorithm based on Greedy Randomized Adaptive
Search Procedure (GRASP), improved with Scatter
Search and Justification methods, and compare the
results obtained with those of other algorithms used in
solving the RCPSP.

2. DEFINITION OF THE RESOURCE
CONSTRAINED PROJECT
SCHEDULING PROBLEM (RCPSP)

Resource Constrained Project Scheduling
Problem can be described mathematically as follows
(Mingozzi, et al., 1998; Valls, Ballestín and Quintanilla,
2005; Tseng and Chen, 2006):

89ISSN 1794-1237 / Año X / Volumen 10 / Número 20 / Julio-Diciembre 2013 / pp. 87-100

There is a set J={1,…,n} of activities (or
jobs) which have to be processed. Every activity j∈J
has a duration (processing time) dj. Moreover, the
activities are interrelated by end-to-start precedence
constraints, being Pj∈J\{j} the set of all the immediate
predecessor activities of activity j, i.e., activities that
must be completed before starting the execution of
activity j. Assuming the Activity-On-Node (AON)
representation, the precedence constraints can be
represented by a directed acyclic graph G=(J,H), where
H={(i,j)|i∈Pj,j∈J}. Additionally, there is a set K={1,…,m}
of types of renewable resources, where each resource
type k ∈ K has a total availability (capacity) Rk at each
time interval of the scheduling period, i.e., the sum of
the amount of resource type k used in the period t, Rk
(t), should not exceed Rk for all t. Each activity j requires
a constant amount, rjk, of units of resource type k during
the entire time interval of its duration. It is assumed that
rjk≤Rk for all j∈J and for all k∈K, in order to ensure the
existence of feasible solutions. Resources occupied by
an activity will not be released until it is completed and
then, they may be occupied by other activities.

All quantities dj, rjk and Rk are non negative
integers for all j and for all k; interrupting the processing
of activities is not allowed and it is assumed that there

are not setup times, or that they are included in the
processing times.

The first and last activities, 1 and n, are fictitious
activities used to represent the beginning and the end of
the whole project: activity 1 must be completed before
starting activities J\{1} and activity n can only start
after the completion of activities J\{n}. In addition, it is
assumed that d1=dn=0 and that r1k=rnk=0 for all k. It is
also assumed, without loss of generality, that activities
are topologically ordered, i.e., each predecessor of
activity j has a smaller activity number than j.

The cost of a feasible solution is given by the
project completion time (makespan). The aim is to find
a schedule of activities s, for example, a series of feasible
starting times (or completion times) for each activity
(s1, s2, …, sn) where s1 = 0, such that precedence and
resource constraints are satisfied and the solution cost,
i.e. that makespan (T(s) = sn), is minimized.

Figure 1 shows an example of a graph
representing a project consisting of eleven interrelated
activities and three types of resources. Each node in the
graph corresponds to an activity and the arcs represent
the precedence relationships between activities.

Figure 1. Graphic Example of a Project with Resource Constraints

From Mingozzi, et al. (1998)

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.

90

A hybrid heuristic Algorithm for solving the resource constrAined project scheduling problem (rcpsp)

Revista EIA Rev.EIA.Esc.Ing.Antioq / Publicación semestral Escuela de Ingeniería de Antioquia —EIA—

Each activity (node) has a subscript that identifies
it and it is located within the node. The number
above the node represents the duration of the activity,
and the numbers below the node correspond to the
consumption of each of the three types of ordered
renewable resources. As mentioned earlier, the first and
the last activity are fictitious. Rk represents the availability
of type of resource k.

This example will be used later in order to clarify
some concepts about the operation of the algorithm
developed in this research.

3. MATHEMATICAL FORMULATION

A way to formulate the RCPSP described in
the preceding section, using integer programming is
presented by Mingozzi et al. (1998):

 (1)

Subject to:.

 (2)

 (3)

 (4)

 (5)

Where:

εjt: Binary decision variables are equal to 1 if and only
if the activity j starts at the beginning of period t.

lsj: Late start time of activity j.

esj: Early start time of activity j.

t: Each of the periods of the planning horizon of the
project.

σ(t,j)=max (0,t-dj+1).

Tmax: Upper bound on the project completion time. It
can be easily computed as Tmax=∑j∈Jdj .

In this approach two activities are always
considered artificial or fictitious (dummy jobs), which are
the first one and the last one (1 and), with zero duration
and zero consumption of all resources. The purpose of
these activities is to represent a single starting point and
a single completion point of the project, respectively.

Equation (1) is the objective function: makespan
or project completion time.

Equations (2) represent the non-preemption
constraints, i.e., those that require that an activity, once
initiated, must continue until its completion.

Inequalities (3) represent precedence constraints:
an activity can only start after completion of all its
predecessors.

Inequalities (4) represent resource constraints:
In any period, the amount of resources used by all
running activities must not exceed the availability of
each corresponding resource.

Expressions (5) indicate that the decision
variables εjt, are binary variables whose possible values
are zero or one. These variables are equal to one (1) if
and only if activity j begins in period t; otherwise, they
are equal to zero (0)

It is easy to find a solution to the problem by
means of any mixed integer linear programming (MILP)
software, but there is a great deterioration of runtime
when increasing the number of activities. Although
the constraints (2), (3) and (4) are easy to formulate, it
should be borne in mind that in each set of them there
may be hundreds or even thousands of constraints for
not very large instances.

The MILP approach is useful to understand what
the problem is and to obtain theoretical conclusions. An
additional feature of this approach is that lower bounds
can be obtained using relaxation techniques (discarding
some constraints).

The RCPSP treated in this research, is not the
most general problem, since the it uses deterministic
activity durations and renewable resources (non-
renewable resources are not considered) and take
into account only one way to perform the activities (as
opposed to the multimodal case), among other features.
In this paper, the instances analyzed are composed of
30, 60 and 120 activities and four types of resources as

91ISSN 1794-1237 / Año X / Volumen 10 / Número 20 / Julio-Diciembre 2013 / pp. 87-100

in Coelho and Vanhoucke (2011), Agarwal, et al. (2011),
and Chen (2011). The search for efficient methods
of solution is still of great interest to the scientific
community due to the fact that it belongs to the class
of NP-Hard problems (Blazewicz, Lenstra and Rinnooy,
1983; Ducker and Knust, 2006) and this makes it a very
difficult problem to solve for which no efficient exact
solution algorithms have been found. Instances with
more than 60 activities show a high level of complexity
because of its combinatorial nature (Valls, Ballestín and
Quintanilla, 2005).

4. HEURISTIC METHODS

The model presented in the previous section
can be solved through analytical techniques, such
as MILP, which guarantee an optimal solution, but
which are not feasible in practice because of their high
processing time. Therefore, it is necessary to resort to
the so-called heuristic methods that, although do not
guarantee optimal solutions, provide a more intuitive
understanding of the problem and make it possible to
reach, in considerably less time, solutions that are usually
fairly close to the optimal one.

The most general idea of the term heuristic is
related to the task of solving real problems intelligently
using the available knowledge. Heuristic method is
the appropriate term for those procedures that, using
common sense, experience or knowledge about a
problem and about applicable techniques, tries to
find solutions using a reasonable amount of resources
(usually computation time). According to Brito, et
al. (2004) heuristic methods can be used to solve
optimization problems, where besides the restrictions
that must be met by the feasible solutions, an objective
function must be evaluated to measure the quality of
the solution.

Some of the heuristic methods used for solving
the RCPSP are Genetic Algorithms, Evolutionary
Algorithms, GRASP, Tabu Search, Simulated Annealing,
Scatter Search, Random Search and Ant Colony
Systems, among others (Chen, et al., 2010; Peteghem
and Vanhoucke, 2010; Montoya-Torres, et al., 2010). In
this paper a hybrid algorithm which combines concepts
of GRASP, Scatter Search and Justification is used. The

latter is an emerging method for solving scheduling
problems that has shown very good results.

5. PROPOSED ALGORITHM

The algorithm proposed in this research for
solving the RCPSP is based on the GRASP method which
is a heuristic method to find approximate solutions for
combinatorial optimization problems, on the basis of the
premise that different and good quality initial solutions
play an important role in the success of local search
methods (Pesek, Schaerf and Zerovnik, 2007).

A GRASP algorithm is a multi-start method, in
which each iteration consists of a phase of construction
of a greedy randomized solution followed by an
improvement phase, using the built solution as the
starting point for improvement (Anagnostopoulos
and Koulinas, 2012). In the improvement phase it is
very common to use a simple local search algorithm;
however, in this research two algorithms are used:
the first one, known as justification, is a method
specifically developed for the RCPSP (Valls, Ballestín
and Quintanilla, 2005; Chen, 2011), and the second
one is a based-population algorithm called scatter
search (Ranjbar and Kianfar, 2009; Shi, et al., 2010). The
proposed algorithm is summarized by the pseudocode
depicted in Figure 2.

For a more precise description of the methodology
used, the following topics will be tackled: way of
representing a solution, construction phase, phase 1 of
improvement (heuristic justification), characterization of
the population of solutions, and phase 2 of improvement
(scatter search).

5.1 Ways of Representing a Solution

Figure 2. Pseudocode of the proposed algorithm.

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.

92

A hybrid heuristic Algorithm for solving the resource constrAined project scheduling problem (rcpsp)

Revista EIA Rev.EIA.Esc.Ing.Antioq / Publicación semestral Escuela de Ingeniería de Antioquia —EIA—

In order to implement the heuristic strategies
chosen, two different methods of representation are
used: activity list and priority values.

In the activity list, each solution is represented
by a list where all the project activities are placed
according to the scheduling order. Figure 3 shows an
example of the activity list for the project of Figure 1.

The activity list in Figure 3 indicates that the
first activity to be scheduled is activity 1, followed by
activity 2; then, activity 7 and so on, according to the
order in which they are arranged in the list. Activities
1 and 11 are not present in the solution given the
fact that, being fictitious (beginning and end of the
project), they have a duration of zero time units.
The solution obtained from the activity list appears
in the Gantt chart at the bottom of Figure 3. Each
activity is scheduled in the earliest possible starting
time without delaying the other activities already
scheduled, taking into account both precedence
and resource constraints; that is, by definition, an
active schedule. Then, activity 2 is scheduled at time
0 since it does not have predecessors, then activity
7 is scheduled simultaneously since it does not have
predecessors either and resources are available
for both; now, activity 3 should be scheduled and,
although it does not have predecessors, it can not be
scheduled on time zero since the resources are not
enough, then activity 3 is scheduled after the end of
activities 2 or 7 when resources are available again.
In this way the remaining activities are scheduled.
For scheduling problems with regular objective
functions, such as minimizing the makespan, the
optimal solution will always be in all active schedules
(Sprecher, Kolisch and Drexl, 1995, cited in Kolisch
and Hartmann, 1999).

In the solution in Figure 3, activities 2 and 7 can
run simultaneously at the beginning of the project. Due
to resource constraints, activities 3 and 4 can be run
only when resources are released after the completion
of activities 2 and 7. Activity 6 can be run only after
completion of activity 3 due to precedence constraints
(as well as to resource constraints).

The above implies that for some activity i, its
starting time could be prior to that of any other activity
that is in a previous position in the activity list. For
example, activity 9 is scheduled after having scheduled

activities 8 and 10; however its starting time is prior to
the starting time of such activities; this may be due to its
consumption of fewer resources. For more information
about the activity list representation, the reader is
referred to Kolisch and Hartmann (1999) and Debels,
et al. (2004).

Each solution represented by the activity list
can be transformed into a representation using priority
values, which is a modification proposed in Debels, et al.
(2004) of the form of representation known as random
key. Figure 4 shows an example of activity list in Figure
3 represented by priority values.

According to the priority values in Figure 4, the
first activity to be scheduled is activity 1, which has the
highest priority, followed by activity 2; in third place,
activity 7; in fourth place, activity 3, and so forth.

It is possible to use two representation methods
in the same algorithm without causing inefficiency
since it is very easy to transform the solution from a
representation method to another. The transformation
of the activity list representation into the priority value
representation can be carried out using the algorithm
represented by the pseudocode in Figure 5.

Similarly, the pseudocode in Figure 6 shows the
procedure to transform the priority value representation
into the activity list representation.

Figure 3. Example of Activity List Representation

Figure 4. Example of Priority Values Representation

93ISSN 1794-1237 / Año X / Volumen 10 / Número 20 / Julio-Diciembre 2013 / pp. 87-100

5.2 Constructive Phase

In the constructive phase, a greedy randomized
procedure is carried out to generate multiple solutions
that are different among them. This procedure involves
selecting all the activities that can be scheduled in a
given period t, taking into account their feasibility due
to precedence and resource constraints. These activities
are called eligible. Then, among all these eligible
activities, the best ones are selected, defining as the
best one that activity that uses the highest quantity of
resources, as follows:

 (6)

Being A(t) the set of activities that are already
scheduled and active at period t.

The variable resourcesi is an indicator of the
resource use that would cause activity i if it were
scheduled in a given period, t.

The number of activities considered as candidates
depends directly on the quality of each one, as follows
(Glover and Kochenberger, 2003):

Let c(e) be the use of resources of the eligible
activity e. A list of candidate activities is created as
follows (Restricted Candidate List: RCL):

	 RCL={e∈C|c(e)≥cmin+α(cmax-cmin)}	 (7)

Where:

C: Set of eligible activities

cmin: Minimum use of resources by one of the eligible
activities, min{c(e)|e∈C}.

cmax: Maximum use of resources by one of the eligible
activities, max{c(e)|e∈C}.

α: Parameter that controls the values c(e) accepted
as candidates (α∈[0,1]).

Then, an activity is chosen randomly from the
candidate list in order to be scheduled and such list
is updated. The procedure is repeated as long as the
candidate activity set is not empty.

When none of the activities can be scheduled,
that is the eligible activity set is empty, the scheduling
time is put forward to the minimum completion time

of the running activities. Then, the eligible activity list
is updated.

Notice that if α=0, all eligible activities become
automatically candidate activities. Therefore, the
method would be equivalent to a totally random
selection. If α=1, only the activities with resource use
being higher than or equal to all other activities are
candidates. Then, the method would be equivalent to
a greedy construction.

The result of this constructive phase is a solution
s, represented by an activity list, which will be then right-
justified using the procedure explained below.

5.3 Improvement Phase 1:
Justification Heuristic

Once an initial solution is built, an improvement
is carried out using the justification procedure
described below (Valls, Ballestín and Quintanilla,
2005, and Xu, et al., 2008).

In a solution or schedule S, as defined
previously, the right justification of an activity j≠n
involves obtaining a schedule S' so that s'i=si for
i≠j, making s'j≥sj with s'j as large as possible, without
increasing the makespan. In a schedule S, the
right justification of activities j in decreasing order
regarding its completion time (fj=sj+dj) generates
an active schedule to the right, SR, called right
justification. SR is not the only one, since it depends
on the used tiebreaker rule(s). In this research, as a

Figure 5. Pseudocode of the procedure to transform the
representation of activity list solution into priority value.

Figure 6. Pseudocode of the procedure to transform the
representation of priority value solution into activity list.

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.

94

A hybrid heuristic Algorithm for solving the resource constrAined project scheduling problem (rcpsp)

Revista EIA Rev.EIA.Esc.Ing.Antioq / Publicación semestral Escuela de Ingeniería de Antioquia —EIA—

tiebreaker rule, the selection of the activity with the
highest priority number in the list of activities is used.

The previous procedure guarantees that the new
solution obtained has a lower or equal makespan than
that of the solution before justification. There is also a
procedure to carry out the left justification, but it is not
considered in this research.

5.4 Characterization of the Population
of Solutions

The solutions resulting from both the constructive
phase and the justification are taken to a solution set
(reference set or population) to carry out phase 2 of
improvement: Scatter Search.

In order to obtain this population of solutions,
it has to be taken into account that, as the search
progresses, solutions belonging to the population must
be changing to add diversification, and that there should
not be repeated solutions; in order to control that, two
filters are applied.

The first filter is the makespan value. If the
makespan of two solutions is different, both solutions
have to be different. If the makespan of two solutions is
the same, the second filter must be evaluated computing
the following indicator:

 IS=∑j∈J sj (8)

If there are two solutions with different IS value,
it can be concluded that the two solutions are different;
but if the IS value of the two solutions is the same, it does
not mean necessarily that the solutions are the same,
although it is very likely that this is the case. However,
in this research, due to efficiency reasons, whenever
two solutions have the same makespan and the same
IS value, we assume that the solutions are the same and
one of them is ruled out.

In order to allow for diversification in the
population, after each Scatter Search iteration
(described next), some solutions of the population are
eliminated in order to be replaced by new solutions
generated in the constructive and justification phases.
The eliminated solutions correspond to the lower quality
solutions (higher makespan) of the population.

5.5 Improvement Phase 2: Scatter Search

The so-called evolutionary methods are among
the most known heuristic methods and the most used
to solve the RCPSP. These methods are based on the
generation, selection, combination and replacement
of a solution set. Genetic algorithms, scatter search,
path relinking and memetic algorithms are part of this
group of methods.

The Scatter Search is a procedure based on
formulations and strategies introduced in the sixties. The
basic concepts of the method were introduced by Glover
(1977) based on the strategies to combine decision rules
in sequencing problems and on the combination of
constraints of the surrogate constraint method.

The scatter search is based on maintaining a
solution set, called reference set, and carrying out
combinations with those solutions. But, unlike genetic
algorithms, it is not based on randomization on a
relatively large solution set, but on systematic and
strategic selections from a small set.

The scatter search is based on combining the
solutions appearing in the so-called reference set
(equivalent to the population of a genetic algorithm).
In this set are the good solutions that have been found.
It is worth mentioning that the meaning of good is not
restricted to the quality of the solution, but the diversity
contributed by the solution to the set is also considered.
One of the most important characteristics of the scatter
search is that it involves integrating the combination of
solutions with the local search.

The scatter search consists basically of the
following elements:

Generator of diverse solutions: The method
involves generating a set P of diverse solutions from
which a small subset of cardinality b is selected, called
reference set, in order to carry out the combinations.
The selection criterion used involves obtaining quality
solutions that are different from each other (quality and
diversity). The solutions of the set P are ranked from best
to worst, regarding their quality.

Different operations are carried out with the set
P, namely:

•	 Creation.	 The	 reference	 set	 starts	 with	 the	 b*
(0<b*<b) best solutions of P. The remaining

95ISSN 1794-1237 / Año X / Volumen 10 / Número 20 / Julio-Diciembre 2013 / pp. 87-100

b-b* are extracted from P using the maximum
distance criterion (Laguna et. al, 2012) with the
solutions already included in the reference set.
In the algorithm developed in this research, at
each iteration, solutions b-b* are replaced by new
solutions created with the randomized constructive
method described before.

Updating. Solutions result ing from the
combinations can enter to the reference set and replace
some of the solutions already included if the former
improve the latter.

Combination method: The scatter search is
based on combining all solutions of the reference set.
For this, subsets consisting of two or more elements of
the reference set are considered and combined using
a routine designed for this purpose. The solution or
solutions obtained from this combination can be
immediately introduced in the reference set (dynamic
updating) or temporarily stored in a list until the
process of carrying out all combinations is completed
and then, to see which solutions can enter to this set
(static updating).

In this research, static updating was used and
solutions were combined using the following procedure:

Having each solution represented by priority
values, the following formula is applied to each activity
of a couple of solutions of the reference set.

 γ(j) =αγA (j)+(1 - α) γB (j) (9)

Then, the γ(j) values must be fixed in order to turn
them into the integer corresponding to their order and
belonging to J, so that the new solution can be represented
using priority values.

Improvement method: Typically, it is a local
search method to improve solutions of the reference
set as well as the combined ones before considering
their inclusion in such set. It is worth mentioning that
in those implementations where no feasible solutions
are used, which is not the case in this work, this method
must be able to obtain a feasible solution from one
that is not feasible. If the method cannot improve the
initial solution, the result is considered to be the same
initial solution.

In this research, the local search was replaced
by the justification method mentioned above. This

means that the justification procedure is carried out
in two different points of the algorithm as a way to
improve the constructive phase and once the scatter
search is completed.

6. RESULTS

In order to evaluate the efficiency of the
algorithm, three data bases of instances of the problem
were used: 480 instances of 30 activities, 480 of 60, and
600 of 120 activities respectively, taken from the PSPLIB
library available online (Kolisch and Sprecher, 2004).

The solutions obtained by the developed algorithm
for the instances of 30, 60 y 120 activities and four
resources are compared with results obtained by other
researchers at international level, where prominent
places are obtained, according to Chen (2011), Tables
2, 3 and 4 for 30, 60 and 120 activities, respectively. The
comparison of the results is made as follows: for problems
of 30 activities, with the known optimum makespan
values, available in the PSPLIB library; for problems of
60 and 120 activities, whose optimum makespan values
are not known, the results are compared with the critical
path lower bound as used by most of researchers.

An Intel core i3 processor of 2.53 GHz and 3 GB
of RAM memory was used to run the algorithm. The
methods were implemented in Visual Basic 6.0.

The algorithm efficiency is measured as the
percentage of average deviation regarding the
optimum makespan or lower bound as a function
of the maximum number of solutions (schedules)
necessary to find such deviation.

This measure has been developed in order to
eliminate the disadvantage posed by the processing
time, which depends on both the processor and
language features. According to Kolisch and
Hartmann (2005), this measure is based on the
hypothesis that the computational effort to build
a solution (schedule) is similar for most heuristic
algorithms.

In order to evaluate the efficiency of each
component of the algorithm, results with the different
phases of the algorithm are presented: In table 1,
first, the randomized solutions generated in the
constructive phase of the algorithm (corresponding to

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.

96

A hybrid heuristic Algorithm for solving the resource constrAined project scheduling problem (rcpsp)

Revista EIA Rev.EIA.Esc.Ing.Antioq / Publicación semestral Escuela de Ingeniería de Antioquia —EIA—

Table 1. Percentage of Average Deviation Regarding the Optimum Makespan vs. Maximum Number of Schedules for
Problems ff 30 Activities.

Method
Maximum number of schedules

1.000 5.000 50.000
GRASP 1,793% 1,538% 1,298%
GRASP + Just. 0,573% 0,470% 0,336%
GRASP + Just. + SS 0,609% 0,440% 0,291%

According to Table 3, for problems of 60 activities, the algorithm developed in this research is ranked in position 16th for 1.000 schedules, 17th for 5.000 schedules
and 15th for 50.000 schedules.

Table 2. Results Collected from Different Researches Around the World. J30

Algorithm SGS Author(s) Schedule limits
 1.000 5.000 50.000

GA, TS – path relinking Both Kochetov and Stolyar 0,1 0,04 0,0
Scatter search – FBI Serial Debels, et al. 0,27 0,11 0,01
GA – hybrid, FBI Serial Valls, et al. 0,27 0,06 0,02
GA – FBI Serial Valls, et al. 0,34 0,2 0,02
GA – forw.–backw., FBI Both Alcaraz, et al. 0,25 0,06 0,03
GA – forw.–backw. Serial Alcaraz and Maroto 0,33 0,12 –
JPSO Serial Chen, Ruey-Maw 0,29 0,14 0,04
Sampling – LFT, FBI Both Tormos and Lova 0,25 0,13 0,05
TS – activity list Serial Nonobe and Ibaraki 0,46 0,16 0,05
Sampling – LFT, FBI Both Tormos and Lova 0,3 0,16 0,07
GA – self-adapting Both Hartmann 0,38 0,22 0,08
GA – activity list Serial Hartmann 0,54 0,25 0,08
Sampling – LFT, FBI Both Tormos and Lova 0,3 0,17 0,09
TS – activity list Serial Klein 0,42 0,17 –
Sampling – random, FBI Serial Valls, et al. 0,46 0,28 0,11
SA – activity list Serial Bouleimen and Lecocq 0,38 0,23 –
GA – late join Serial Coelho and Tavares 0,74 0,33 0,16
GRASP-JUST-SS Serial This study 0,57 0,39 0,23
TS – schedule scheme Related Baar et al. 0,86 0,44 –
Sampling – adaptive Both Kolisch and Drexl 0,74 0,52 –
GA – random key Serial Hartmann 1,03 0,56 0,23
Sampling – LFT Serial Kolisch 0,83 0,53 0,27
Sampling – global Serial Coelho and Tavares 0,81 0,54 0,28
Sampling – random Serial Kolisch 1,44 1,0 0,51
GA – priority rule Serial Hartmann 1,38 1,12 0,88
Sampling – WCS Parallel Kolisch 1,4 1,28 –
Sampling – LFT Parallel Kolisch 1,4 1,29 1,13
Sampling – random Parallel Kolisch 1,77 1,48 1,22
GA – problem space Mod. par. Leon and Ramamoorthy 2,08 1,59 –

 Source. Adapted by the authors of Chen (2011, Table 5).

Finally, according to Table 4, for problems of 120 activities, the algorithm developed in this research is ranked in position 12th for 1.000 schedules, position 15th for
5.000 schedules and position 14th for 50.000 schedules.

97ISSN 1794-1237 / Año X / Volumen 10 / Número 20 / Julio-Diciembre 2013 / pp. 87-100

Table 3. Results Collected from Different Researches Around the World. J60

Algorithm SGS Author(s) Schedule limits
 1.000 5.000 50.000

Scatter search – FBI Serial Debels, et al. 11,73 11,10 10,71
GA – hybrid, FBI Serial Valls, et al. 11,56 11,10 10,73
GA, TS – path relinking Both Kochetov and Stolyar 11,71 11,17 10,74
GA – FBI Serial Valls et al. 12,21 11,27 10,74
GA – forw.–backw., FBI Both Alcaraz, et al. 11,89 11,19 10,84
JPSO Serial Chen, Ruey-Maw 12,03 11,43 11,00
GA – self-adapting Both Hartmann 12,21 11,70 11,21
GA – activity list Serial Hartmann 12,68 11,89 11,23
Sampling – LFT, FBI Both Tormos and Lova 11,88 11,62 11,36
Sampling – LFT, FBI Both Tormos and Lova 12,14 11,82 11,47
GA – forw.–backw. Serial Alcaraz and Maroto 12,57 11,86 –
Sampling – LFT, FBI Both Tormos and Lova 12,18 11,87 11,54
SA – activity list Serial Bouleimen and Lecocq 12,75 11,90 –
TS – activity list Serial Klein 12,77 12,03 –
TS – activity list Serial Nonobe and Ibaraki 12,97 12,18 11,58
Sampling – random, FBI Serial Valls, et al. 12,73 12,35 11,94
Sampling – adaptive Both Schirmer 12,94 12,58 –
GA – late join Serial Coelho and Tavares 13,28 12,63 11,94
GRASP-JUST-SS Serial This study 12,88 12,42 11,96
GA – random key Serial Hartmann 14,68 13,32 12,25
GA – priority rule Serial Hartmann 13,30 12,74 12,26
Sampling – adaptive Both Kolisch and Drexl 13,51 13,06 -
Sampling – WCS Parallel Kolisch 13,66 13,21 –
Sambpling – global Serial Coelho and Tavares 13,80 13,31 12,83
Sampling – LFT Serial Kolisch 13,59 13,23 12,85
TS – schedule scheme Related Baar, et al. 13,80 13,48 –
GA – problem space Mod. par. Leon and Ramamoorthy 14,33 13,49 –
Sampling – LFT Serial Kolisch 13,96 13,53 12,97
Sampling – random Parallel Kolisch 14,89 14,30 13,66
Sampling – random Serial Kolisch 15,94 15,17 14,22

Source. Adapted by the authors of Chen (2011, Table 7).

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.

98

A hybrid heuristic Algorithm for solving the resource constrAined project scheduling problem (rcpsp)

Revista EIA Rev.EIA.Esc.Ing.Antioq / Publicación semestral Escuela de Ingeniería de Antioquia —EIA—

Table 4. Results Collected from Different Researches Around the World. J120

Algorithm SGS Author(s) Schedule limits
 1.000 5.000 50.000

GA – hybrid, FBI Serial Valls, et al. 34,07 32,54 31,24
GA – forw.–backw., FBI Both Alcaraz, et al. 36,53 33,91 31,49
Scatter search – FBI Serial Debels, et al. 35,22 33,10 31,57
GA – FBI Serial Valls, et al. 35,39 33,24 31,58
GA, TS – path relinking Both Kochetov and Stolyar 34,36 33,36 32,06
Population –based – FBI Serial Valls, et al. 35,18 34,02 32,81
JPSO Serial Chen, Ruey-Maw 35,71 33,88 32,89
GA – self-adapting Both Hartmann 37,19 35,39 33,21
Sampling – LFT, FBI Both Tormos and Lova 35,01 34,41 33,71
Ant system Serial Merkle, et al. - 35,43 -
GA – activity list Serial Hartmann 39,37 36,74 34,03
Sampling – LFT, FBI Both Tormos and Lova 36,24 35,56 34,77
Sampling – LFT, FBI Both Tormos and Lova 36,49 35,81 35,01
GA – forw.–backw. Serial Alcaraz and Maroto 39,36 36,57 –
TS – activity list Serial Nonobe and Ibaraki 40,86 37,88 35,85
GRASP-JUST-SS Serial This study 38,16 37,30 36,32
GA – late join Serial Coelho and Tavares 39,97 38,41 36,44
Sampling – random, FBI Serial Valls, et al. 38,21 37,47 36,46
SA – activity list Serial Bouleimen and Lecocq 42,81 37,68 –
GA – priority rule Serial Hartmann 39,93 38,49 36,51
Sampling – adaptive Both Schirmer 39,85 38,70 –
Sampling – LFT Parallel Kolisch 39,60 38,75 37,74
Sampling – WCS Parallel Kolisch 39,65 38,77 –
GA – random key Serial Hartmann 45,82 42,25 38,83
Sampling – adaptive Both Kolisch and Drexl 41,37 40,45 –
Sampling – global Serial Coelho and Tavares 41,36 40,46 39,41
GA – problem space Mod. par. Leon and Ramamoorthy 42,91 40,69 –
Sampling – LFT Serial Kolisch 42,84 41,84 40,63
Sampling – random Parallel Kolisch 44,46 43,05 41,44
Sampling – random Serial Kolisch 49,25 47,61 45,60

the GRASP method) are considered individually, then,

these initial randomized solutions are considered

with a subsequent phase of improvement using

justification (corresponding to the so-called GRASP

+ Just. method); finally, the whole algorithm is used,

i.e., adding an improvement phase with Scatter

Search, (SS), corresponding to the GRASP + Just.

+ SS method.

Table 1 shows the results obtained for problems

of 30 activities, on the basis of the measures presented

in Kolisch and Hartmann (2005).

Tables 2, 3 and 4 based on Chen (2011), show

data obtained by the most advanced researchers around

the world, who work with 480 problems of 30 activities,

480 of 60 and 600 of 120 activities taken from PSPLIB.

Source. Adapted by the authors of Chen (2011, Table 9).

99ISSN 1794-1237 / Año X / Volumen 10 / Número 20 / Julio-Diciembre 2013 / pp. 87-100

According to Table 2, for problems of 30
activities, the algorithm developed in this research is
ranked in position 17th for 1.000 schedules, position
18th for 5.000 schedules and position 15th for 50.000
schedules.

It can also be noted that in Tables 2, 3 and 4,
that this study is the only one that uses GRASP and one
of the only two studies that uses Scatter Search.

7. CONCLUSIONS

This research confirms the good performance
obtained using the Justification heuristics as a
complement of any heuristic method for the RCPSP.
The use of this heuristics improved around 68% the
results obtained before its implementation.

Besides, it was confirmed that the use of
additional elements in the algorithm improves its
performance, which does not always happen.

Compared with the results obtained by other
researchers, the developed algorithm finds good

results. This can be confirmed because in the list
presented in Chen (2011) the developed algorithm is
superior to others in the list. This is so in spite of the
simplicity of this algorithm due to the absence of local
search procedures and of the poor presence of Scatter
Search on the list of algorithms.

8. FUTURE WORK

The present research gives rise to the following
lines of work for future research:

•	 To improve the algorithm presented here using

different methods to generate and combine

solutions.

•	 To design hybrid algorithms using other methodologies

like Local Search, Simulated Annealing, Tabu Search

and Path Relinking, among others.

•	 To design adaptive strategies that allow for the

modification of parameters such as size variation of

the reference set and the parameters necessary to

create and combine solutions.

REFERENCES

Agarwal, A., Colak, S. and Erenguc, S. (2011). A
Neurogenetic Approach for the Resource-Constrained
Project Scheduling Problem. Cumputers and Operations
Research, 38(1) January, pp. 44-50. [On line]. Available:
http://dx.doi.org/10.1016/j.cor.2010.01.007

Anagnostopoulos, K. and Koulinas, G. (2012). Resource-
Constrained Critical Path Scheduling by a GRASP-
Based Hyperheuristic. Journal of Computing in
Civil Engineering, 26(2), pp. 204-213. [On line].
[Cited: October 10th, 2006]. Available: http://dx.doi.
org/10.1061/(ASCE)CP.1943-5487.0000116

Blazewicz, J.; Lenstra, J. and Rinnooy K. (1983).
Scheduling Projects Subject to Resource Constraints:
Classification and Complexity. Discrete Applied
Mathematics, 5, pp. 11-24.

Brito, J., Campos, C., García, F., García, M., Melián, B.,
Moreno, J. and Moreno, J. (2004). Metaheurísticas:
una revisión actualizada. Grupo de Computación
Inteligente. Universidad de La Laguna.

Chen, Rue-Man. (2011). Particle Swarm Optimization with
Justification and Designed Mechanisms for Resource-

Constrained Project Scheduling Problem. Expert
Systems with Applications, 38(6), pp. 7102–7111.

Chen, W.; Shi, Yan-ju., Teng, Hong-fei.; Lan, Xiao-ping.; and
Hu, Lin-chen. (2010). An Efficient Hybrid Algorithm for
Resource-Constrained Project Scheduling. Information
Sciences, 180(6) March, pp. 1031–1039.

Coelho, J. and Vanhoucke, M. (2011). Multi-mode
Resource-Constrained Project Scheduling Using RCPSP
and SAT Solvers. European Journal of Operational
Research, 213(1)August, pp. 73–82.

Debels, D.; De Reyck, B.; Leus, R. and Vanhoucke, M.
(2004). A Hybrid Scatter Search / Electromagnetism
Meta-heuristic for Project Scheduling. Working Paper.
Universiteit Gent.

Deblaere, F., Demeulemeester, E. and Herroelen, W.
(2011). Proactive policies for the stochastic resource-
constrained project scheduling problem. European
Journal of Operational Research, 214(2), pp. 308-316.

Demeulemeester, E. and Herroelen, W. (1992). A Branch
and Bound Procedure for the Multiple Resource-
Constrained Project Scheduling Problem. Management
Science, 38(12) December, pp. 1803-1818.

Juan Carlos rivera, luis Fernando Moreno v., FranCisCo Javier díaz s. y Gloria elena Peña z.

100

A hybrid heuristic Algorithm for solving the resource constrAined project scheduling problem (rcpsp)

Revista EIA Rev.EIA.Esc.Ing.Antioq / Publicación semestral Escuela de Ingeniería de Antioquia —EIA—

Demeulemeester, E. and Herroelen, W. (1997). New
Benchmark Results for the Resource-Constrained
Project Scheduling Problem. Management Science
43(11) November, pp. 1485–1492.

Drucker, P. and Knust, S. (2006). Complex Scheduling.
Berlin: Ed. Springer-Verlag, Berlin.

Glover, F. (1977). Heuristics for Integer Programming Using
Surrogate Constraints. Decision Sciences, 8,(1) January,
pp.156-166

Glover, F. and Kochenberger, G. (2003). Handbook of
Metaheuristics. Kluwer Academic Publishers.

Kolisch, R. and Sprecher, A. (2004). Library for Project
Scheduling Problem – PSPLIB. [Cited: October 10th,
2006]. Available: http://129.187.106.231/psplib/.

Kolisch, R. and Hartmann, S. (1999). Heuristic algorithms
for solving the resource-constrained project scheduling
problem: classification and computational analysis. In:
Weglarz, J. (Ed.). Project Scheduling – Recent Models,
Algorithms and Applications. Boston: Kluwer Academic
Publishers, pp. 147-178.

Kolisch, R. and Hartmann, R. (2005). Experimental
Investigation of Heuristics for Resource-Constrained
Project Scheduling: An Update. European Journal of
Operational Research, 174(1), pp. 23-37.

Laguna, M., Martí, R., Gallego, M. and Duarte A. (2012).
The Scatter Search Methodology. Wiley Encyclopedia
of Operations Research and Management Science (Wiley
EORMS). John Wiley and Sons, Inc. Available: http://
dx.doi.org/10.1002/9780470400531.

Mingozzi, A., Maniezzo, V., Ricciardelli, S. and Bianco,
L. (1998). An exact algorithm for the Resource
Constrained Project Scheduling Problem Based on a
New Mathematical Formulation. Management Science,
44(5) May, pp. 714-729.

Montoya-Torres, J., Gutiérrez-Franco, E. and Pirachicán-
Mayorga, C. (2010). Project Scheduling with Limited
Resources Using a Genetic Algorithm. International Journal
of Project Management, 28(6) August, pp. 619–628.

Pesek, I., Schaerf, A. and Zerovnik, J. (2007). Hybrid Local
Search Techniques for the Resource-Constrained Project
Scheduling Problem. T. Bartz-Beielstein et al. (Eds.):
HM, LNCS 4771. Springer-Verlag Berlin Heidelberg.
pp. 57–68.

Peteghem, V. and Vanhoucke, M. (2010). A Genetic
Algorithm for the Preemptive and Non-Preemptive
Multi-Mode Resource-Constrained Project Scheduling
Problem. European Journal of Operational Research,
201(2) March, pp. 409–418.

Ranjbar, M. and Kianfar, F. (2009). A Hybrid Scatter
Search for the RCPSP. Transaction E: Industrial
Engineering, 16(1), pp. 11-18.

Shi, Yanju., Qu., Fuzheng., Chen, W. and Li, B. (2010). A
Differential Evolution with Scatter Search for Project
Scheduling. Applied Mechanics and Materials, 26-28.
pp. 724-727.

Sprecher, A., Kolisch, R. and Drexl, A. (1995). Semi-active,
Active, and Non-Delay Schedules for the Resource-
Constrained Project Scheduling Problem. European
Journal of Operational Research, 80 January, pp. 94-102.

Tseng, Lin-Yu. and Chen, Shih-Chieh. (2006). A Hybrid
Metaheuristic for the Resource-Constrained Project
Scheduling Problem. European Journal of Operational
Research, 175(2) December, pp. 707-721.

Valls, V.; Ballestín, F. and Quintanilla, S. (2005). Justification
and RCPSP: A Technique that Pay. European Journal of
Operational Research, 165(2) September, pp. 375–386.

Xu, N.; McKee, S.; Nozick, L. and Ufomata, R. (2008).
Augmenting Priority Rule Heuristics with Justification
and Rollout to Solve the Resource-Constrained Project
Scheduling Problem. Computers and Operations
Research, 35(10) October, pp.3284-3297.

PARA CITAR ESTE ARTÍCULO /
 TO REFERENCE THIS ARTICLE /

PARA CITAR ESTE ARTIGO /

Rivera-A.; J.C; Moreno -V.; L.F.; Díaz-S., F.J. y Peña-Z.,
G.M. (2013). A Hybrid Heuristic Algorithm for Solving
the Resource Constrained Project Scheduling Problem
(RCPSP). Revista EIA, 10(20) julio-diciembre, pp. 87-
100. [Online] Disponible en: http://dx.doi.org/10.14508/
reia.2013.10.20.87-100

