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Abstract

Traditionally, at a global level, construction projects face challenges during the 
planning and execution stages due to poorly organized scheduling and inadequate 
allocation of roles and resources. This results in significant differences between the 
projected timeline and what is actually carried out during construction.

This research suggests implementing a Machine Learning (ML) model using 
earned value analysis and project cash flows to anticipate potential deviations and 
future progress in a construction project’s schedule, as well as to predict possible 
cost overruns. The study employs six regression-based machine learning models: 
Ordinary Least Squares (OLS), Theil-Sen regression (TheilSen), RANSAC regression 
(RANSAC), Huber regression (Huber), k-nearest neighbors regression (KNNR), 
and random forest regression (RFR). Two datasets from residential construction 
projects were used; the first dataset contains 102 records for time estimation, 
and the second dataset includes 81 records for cash flow estimation. Additionally, 
the results obtained were compared with a previously proposed model based on 
Markov chains.

The predictive performance of the implemented ML models showed improved 
accuracy, increasing the R² compared to previously proposed models. The models 
achieved mean deviations of 2.09% in predicting future progress and 11.05% in 
forecasting construction delays, as well as 0.39% in predicting future cash flow 
and 3.61% in estimating construction cost overruns. This implementation can 
contribute to improving control, defining strategies, and planning future actions for 
cost and time management in construction projects, offering a promising approach 

to enhancing overall project efficiency.
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Predicción de Retrasos y Sobrecostos 
en Proyectos de Construcción: Un 
Enfoque de Machine Learning.

Resumen

Tradicionalmente, a nivel global, los proyectos de construcción enfrentan problemas 
durante las etapas de planificación y ejecución de obras, debido a una programación 
mal organizada y a una asignación inadecuada de funciones y recursos, lo que resulta 
en diferencias significativas entre el cronograma proyectado y lo que realmente se 
lleva a cabo durante la construcción. Esta investigación sugiere la implementación 
de un modelo de Machine Learning (ML) utilizando análisis de valor ganado y flujos 
de caja de los proyectos para anticipar posibles desviaciones y el avance futuro en el 
cronograma de un proyecto de construcción, así como para prever los sobrecostos 
que podría experimentar un proyecto.

La investigación utiliza seis modelos de aprendizaje automático de regresión 
lineal: Mínimos Cuadrados Ordinarios (OLS), regresión Theil-Sen (TheilSen), 
regresión RANSAC (RANSAC), regresión Huber (Huber), regresión de k-vecinos 
más cercanos (KNNR) y regresión de bosques aleatorios (RFR). Se emplearon dos 
conjuntos de datos de proyectos de construcción de viviendas; el primer conjunto 
tiene 102 datos para la estimación de tiempos, y el segundo cuenta con 81 datos para 
la estimación del flujo de caja. Además, se compararon los resultados obtenidos con 
un modelo previamente propuesto que estaba basado en cadenas de Márkov.

 El desempeño de predicción de los modelos de ML implementados evidenció 
un rendimiento predictivo mejorado, aumentando el R² respecto a los modelos 
antes propuestos, obteniendo desviaciones medias del 2,09% en la predicción del 
avance futuro y 11,05% en la predicción del retraso de construcción; del 0,39% 
en la predicción del flujo de caja futuro y 3,61% en la predicción del sobrecosto 
de construcción. Esta implementación puede constituir un aporte para mejorar 
el control, determinar estrategias y acciones futuras para la gestión de costos y 
tiempo en proyectos de construcción, ofreciendo una vía prometedora para mejorar 
la eficiencia general del proyecto.

Palabras clave: Machine Learning; Predicción; Cronograma; Flujo de caja; Valor 
Ganado del Cronograma; Valor Ganado; Costos-Cronograma; Sobrecosto-Retardo.
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1. Introduction

Around the AECO Architecture, Engineering, Construction & 
Operations sector at a global level, it is common to find low levels of 
productivity and incipient results in the performance and fulfilment 
of goals and objectives (Rudeli et al., 2018; WEF et al., 2016). The 
biggest challenge and main focus of construction management 
is to ensure that projects are executed as planned in time, cost 
and ensuring quality, which is a very wasteful and sometimes 
unattainable task for project managers, because in practice there 
is a lack of rigorous planning of construction projects, or this 
planning is usually developed in its own way, according to empirical 
and deterministic working methods, triggering losses in time and 
cost overruns (Mohamed et al., 2021), this has led construction to 
move towards the incorporation of value stream principles, and 
in approaches that help optimize the way in which all stages of 
construction are carried out, from the development of a report to the 
operation of the facility (CIRIA, 2013).

Currently, multiple practices and techniques coexist in project 
management and the application of standards such as ISO 21500, 
PMBOK® guide, among others (Rúa-Machado, 2022), however its 
application is not a linear aspect and requires analysis structures 
that involve reflections that mitigate the risk of error due to a lack 
of systemic understanding in time estimates and the variables 
that make it complex (Cooke-Davies, 2011), especially from the 
perspective of uncertainty and risk management (Vanhoucke, 
2013). Schedule management is one of the areas of knowledge in 
project management focused on the planning, coordination, and 
control of the activities necessary to carry out the development 
of a project and its products (PMI, 2017), in addition to serving 
as a model to communicate, identify interdependencies, manage 
expectations, and report performance (PMI, 2021). In building and 
infrastructure construction projects, this area of knowledge is critical 
and involves analyses that go beyond the identification, sequencing, 
and estimation of the activities necessary to complete the project, 
such as supplier involvement, risk analysis and cost integration 
(Tsegaye, 2019). A schedule without these elements is limited to a 
simple graphical representation and loses all its potential value. In 
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general terms, schedules are one of the most popular and accepted 
tools to control and monitor construction time, however, despite their 
proven importance, multiple delays in the schedule are widespread 
(Sawhney et al., 2020) (Mohamed et al., 2021), requiring additional 
time beyond its original estimated duration, placing the interests 
of stakeholders at risk, and often not allowing the objectives to be 
achieved (Rudeli et al., 2017)

In recent decades the efforts to control and improve productivity 
in the execution of building and infrastructure construction projects, 
has depended on the use of different software tools such as Microsoft 
Project, Asta Power Project, Primavera, among others and despite 
its potential, most construction projects continue to face time losses 
and cost overruns largely due to the limited deployment of software, 
where its main use is limited to visualization.  These applications 
are used as a graphical base, maintaining a focus on visualization, in 
line with the principles of graphical analysis originally formulated 
by Karol Adamiecki (Marsh, 1975) and later by Henry Gantt (Gantt, 
1910), reflecting a predominant trend and limited adoption of 
methods that transcend graphical bias (Olivieri et al., 2018). In a 
survey AECO professionals (n=48) for a graduate program in Project 
and Construction Management, 85,4% preferred spreadsheet over 
project management software, and only 10,4% had a vague idea of 
what Earned Value Management (EMV) and Earned Schedule (ES) is, 
reflecting a gap in understanding and implementing best practices 
to ensure control and predictability over the time and cost of 
construction projects.

According to (Camacol & Sena, 2015), the methodologies used for 
the management, development, monitoring, and evaluation of project, 
as well as for productivity, shows a medium level of application. In 
the context of companies in the construction sector in Colombia, the 
most used methodologies are the Critical Path Method (CPM) and 
Program Evaluation and Review Technique (PERT), accounting for 
54%. Additionally, there is a 20% adoption of Lean Construction 
approaches and a 20% implementation of practices associated with 
the PMBOK® guide. PERT and CPM methodologies are based on a 
model of operations for the conversion of resources into finished 
products, often ignoring the fact that most construction projects have 
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a very important component of operations, flows or displacements 
of materials,  the roaming of labor and external dependence on 
imported resources, among others (PMI, 2016; Tsegaye, 2019), 
which highlights the underlying complexity of schedules, due to the 
particular interrelationships between activities, processes, culture 
and mostly human behavior (Grau et al., 2013; Vanhoucke, 2012).

These complexities require new analysis processes and methods 
that support current management models that seek to integrate 
and coordinate them such as the latest planner Last Planner System 
LPS®(Ballard, 2000, 2008; Brioso et al., 2017; L. J. Koskela et al., 
2002)  and Location Based Management System LBMS (Kenley & 
Seppänen, 2009). For (Morin, 1990) complexity is a network of 
events, actions, interactions, feedback, determinations, and chances, 
which constitute our phenomenal world. According to (Gell-Mann, 
1995), complexity means “braided together”, concepts that are 
fundamental to raise awareness, in the perspective of schedule 
management, that a systemic vision is necessary to conceive and 
integrate as many variables as possible and overcome existing 
barriers. In this scenario, the nature of the environment and the 
dynamics of interaction emerging between the actors that condition 
the graphic representation and its scope of articulation, can yield 
better results in estimation and predictability, establishing criteria of 
objective value for the modelling, focus and organizational degree of 
the projects, without limiting them to planning (Remington & Pollack, 
2016) , making its management dynamic in execution, since it is there 
where the risks and restrictions generated by the complementarity 
of emerging interactions materialize as sources of knowledge to deal 
with causalities (induction and deduction), conceiving new abductive 
and creative forms of management (L. Koskela et al., 2019).

Given the high levels of uncertainty and unpredictability in a fast-
paced and highly competitive global market (WEF, 2020; Yazıcıoğlu & 
Kanoglu, 2022), the incorporation of new techniques and the use of 
tools should allow the ability to observe projects from many different 
perspectives, in such a way that their methodological development 
satisfies a programming model capable of delivering value for 
informed and contextualized decision making,  Not limited to 
traditional graphical bar display. In this sense, this research seeks to 
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contribute to the creation of alternatives to address the intrinsically 
complex reality in which construction projects operate and generate 
methods to estimate and simulate potential deviations without 
limiting itself to measuring constant progress by evaluating plans and 
taking corrective actions when necessary (Kerzner, 2022).

Recently, the ability of artificial intelligence (AI) and machine 
learning (ML) methods to solve various engineering problems has 
been demonstrated (Kerzner, 2022; Wu & Chau, 2013) .Thanks to 
this, this article presents the implementation of 4 linear machine 
learning models and 2 nonlinear models to predict time deviation, 
and cost overrun in construction projects, based on the management 
of the value gained in construction schedules and validates it in a 
case study proposed by (Rudeli et al., 2017), which uses a database 
of construction projects to train the model and for cross-validation. 
This implementation can allow managers, construction committees 
and methodologies such as Last Planner System®, to consider 
historical behaviours for the prediction of deviations in costs, such as 
in schedules to improve predictability, rectify errors and formulate 
managerial judgments the construction stage.

2. Background

Prediction includes a set of approaches and techniques with the 
purpose of generating reliable estimates of costs and schedule 
results that support proactive and informed decision making, for 
this the interaction of work teams and methodological structuring 
throughout the project, can improve the accuracy and predictability 
of numerical forecasting (CII, 2013), however, making any prediction 
of future performance, particularly with respect to final cost and 
schedule, is a difficult task (Grau & Back, 2015) and despite the use 
of the aforementioned software, in practice, they lack management, 
evidenced gaps in the application of consolidated methodological 
criteria such as DCMA 14-point Schedule Assessment (Government 
Accountability Office, 2015; Paterson, 2017), whose value lies in 
evaluating the consistency of the schedule and the areas that can 
potentially divert the quality of the analysis due to lack of sequence 
coordination, prediction and conception of risk involved by quality 
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deviations, control failures, defects and nonconformities, which is 
usually accompanied by cost overruns (Mohamed et al., 2021).

According to (Pellerin & Perrier, 2019) the performance of 
scheduling plans is usually evaluated by a conformance measure of 
the as-built schedules against the as-planned schedules, however, 
this practice, while common, is often insufficient to gain a full 
understanding of project performance. It is important to recognize 
that while comparing actual and planned schedules is essential, it 
does not provide a comprehensive view of all the complexities and 
challenges that can arise during the execution of a project. In this 
sense, a systemic vision that allows adaptive schedule management 
based on iterations and releases and adjustments supported by 
predictive analysis is imperative (Hermano & Martín-Cruz, 2019; 
PMI, 2016; Sepasgozar et al., 2019). In contrast, modern methods 
for project planning and control are concerned with identifying and 
mitigating the schedule risks and integrating quality as a control 
variable, while considering all constraints arising in practice at 
the activity level as well as at the project level (Pellerin & Perrier, 
2019). To this, machine learning (ML) techniques ranging from 
linear regression to artificial neural networks have been used, 
where preliminary evaluations such as contingency analysis and 
risk management are considered (Jaafari et al., 2021; Theingi Aung 
et al., 2023). These studies have shown that ML techniques have 
the potential to effectively capture the complexity of relationships 
of project activities, product activities and emerge contingencies, 
allowing accurate estimates.

Earned Value Management (EVM) and Earned Schedule (ES).

EVM is a methodology for measuring the performance of the 
three typical variables (scope, time, and cost) in project management. 
Its system is based on a set metrics to measure and evaluate the 
overall status of a project, allowing for early warning signals to 
timely detect issues, potential risks areas, progress, or seize projects 
opportunities. It provides an objective indication of achievement, 
allowing the communication of earned value in terms of work 
performed al current costs compared to projected cost over time, 
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thus enabling the assessment of progress in monetary terms (Babar 
et al., 2017; Zowghi et al., 2011).

In figure 1, key parameters in project planning are presented, 
including the concept of Earned Schedule (ES), an extended version 
of Planned Value (PV) and Earned Value (EV) metrics. It is defined 
as the extra time needed to meet predetermined progress targets 
when construction falls behind the planned schedule. If construction 
is ahead of schedule, it can be described as the period during which 
construction can be paused without resulting in a delay in the 
established timeframe. (Rudeli et al., 2017; Serna-Gutiérrez, 2023). 
In addition to performance indicators such as both Cost Performance 
Index (CPI-t) and Schedule Performance Index (SPI-t), and their 
respective Cost and Schedule variance (CV/SV) at a project´s progress 
state “t”, these metrics from the basis for projection indicators such 
as Estimated at Completion (EAC) and Estimate at Completion for a 
given point in time (EAC-t).

Figure 1. Projection indicators and Earned Value Management metrics. Fountain from
 (Rudeli et al., 2017; Serna-Gutiérrez, 2023).

Drawing upon Earned Value Management (EVM), various digital tools 
have been developed, among which is the Time Productivity Diagram 
(TPD). This computer-based complement is part of the IGC research 
projects that are in the development phase and whose purpose is 
to analyze activity progress not in terms of time, as done by MS 
Project software, but in relation to the among reported measurement 
executed work. It projects completion time based on the current 
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average productivity of the workforce involved in the activity. In 
addition to conducting the Schedule Variance (SV), Cost Variance 
(CV), Schedule Performance Index (SPI) and Cost Performance 
Index (CPI) analyses, with the corresponding interpretation based 
on the results (Serna-Gutiérrez, 2023). The data and measurements 
generated by this tool, and information collected during project 
schedule monitoring, present significant potential. This potential 
can be harnessed using machine learning (ML) models to identify 
patterns, behaviors, and make predictions that address deficiencies 
related to cost and time deviation in construction projects.

Case study and general properties of the data points used.

This research evaluates the implementation of ML techniques to 
estimate the two fundamental indicators of project management. The 
first, called ES-total, is the percentage of additional time needed to 
reach project completion, i.e., the total delay in the project. And the 
second indicator called SEAC, which is the percentage of additional 
money needed to reach project completion, i.e., the total cost overrun 
in the project. This study uses the standardized database presented 
by (Rudeli et al., 2017). The first dataset comes from the analysis 
of the planned and executed schedules of 102 housing cooperative 
construction projects. The data for each project was the total ES-
and the actual progress of the project. The second set of data comes 
from the analysis of the actual cash flow of 81 housing cooperative 
construction projects. The data for each project was the actual cash 
flow of the project.  

Considering that projects have different construction times, 
and the estimated completion time and cash flow values needed 
to be discretized, the data were standardized to have equivalent 
data, Therefore, the construction duration was subdivided into ten 
equal segments, each representing one-tenth of the total time. This 
approach allows for the comparison of two projects with distinct 
construction timelines by evaluating the percentage of progress 
achieved and flow of box until a specific time.

In this way, the first set of data for each project obtains a total 
of 10 progress values, one for every tenth of time, and an ES-total 
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(Figure 2). And from the second set of data for each project a total 
of 12 cash flow values, one for every tenth of time, a value at time t0 
which is the investment made by the projects before construction 
began, and an ES value corresponding to the cash flow that was 
realized after reaching the planned time (Figure 3). Additionally, the 
SEAC indicator corresponding to the additional cash flow necessary 
to achieve the completion of the project was calculated, this was 
calculated by subtracting 100% from the sum of the cash flows in all 
the statements.

Figure 2. (A) Behavior of data set 1. (B) Boxplot: data set 1. Source. Own elaboration.

Data set 1, as shown in Figure 2 and quantified in Table 1, shows 
homogeneous behavior for each of the tenths of time with average 
deviations of up to 4.08%, while the ES indicator has a dispersed 
behavior, with average deviations of 26.80% and up to 120%. This is 
due to many factors and risks in construction that can cause delays 
to become extensive and without a certain pattern of behavior, which 
makes it difficult to estimate them, however, ML techniques will allow 
artificial intelligence models to be trained and obtain estimates that 
at least reduce the average deviations of the data.
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Table 1. Overview of real progress and Earned Schedule (ES) data recorded in tenths of the anticipated progress for the 102 analyzed 
construction projects.(Rudeli et al., 2017)

Metric (%)
Interval

t/ 10 2 t/ 10 3 t/ 10 4 t/10 5 t/ 10 6 t/ 10 7 t/ 10 8 t/ 10 9 t/ 10 t ES
Average 5.35 7.75 8.26 8.37 8.93 9.62 9.33 9.11 9.11 8.16 32.59

Deviation 4.08 3.67 3.50 3.07 3.49 3.65 3.52 3.32 3.61 3.74 26.80
Maximum 17.62 20.00 20.42 16.34 18.00 30.13 20.13 21.23 24.17 16.27 120.00
Minimal 0.00 0.72 2.08 0.00 0.88 3.01 2.51 3.32 0.01 0.00 -6.00

Figure 3. (A) Behavior of data set 2. (B) Boxplot: data set 2. Source. Own elaboration.

Data set 2, as shown in Figure 3 and quantified in Table 2, 
presents a more homogeneous behavior than the data in set 1, for 
each of the tenths of time with average deviations of up to 1.81%, in 
the same way that the ES and SEAC indicators have a more uniform 
behavior.  with average deviations of 6.04% and 10.97%. This is due 
to the fact that the behavior of cash flow, although it is affected by 
factors and risks in construction, these do not impact in an extensive 
way as can be presented with respect to the execution time, which 
makes it not difficult to estimate them, and it can be expected that the 
ML techniques implemented will allow artificial intelligence models 
to be trained and obtain estimates with very low deviations.
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Table 2. Overview of real cash flow, information from Earned Schedule (ES), and SEAC, presented in tenths of the anticipated progress for 
the 81 examined construction projects.(Rudeli et al., 2017).

Metric (%)
Interval

0 t/ 10 t/ 10 2 t/ 10 3 t/ 10 4 t/10 5 t/ 10 6 t/ 10 7 t/ 10 8 t/ 10 9 t/ 10 t ES SEAC

Average 8.88 9.51 10.85 10.38 10.81 9.32 10.39 9.16 9.16 9.95 9.71 8.94 17.07

Deviation 1.81 0.76 0.82 0.71 0.90 0.75 0.61 0.54 0.66 0.99 1.07 6.04 10.97

Maximum 21.33 10.53 12.77 12.34 12.00 12.00 11.20 10.64 10.81 11.09 10.88 35.65 55.13

Minimal 6.68 6.25 6.33 7.21 7.55 8.22 7.05 7.58 7.64 6.85 6.75 4.09 -3.26

3. Methodology

Applied models.

To estimate the ES time and ESAC cash flow indicators, ML 
models are implemented governed by the mathematical expressions 
proposed by (Pedregosa et al., 2012). Linear regression models 
are methods that allow obtaining or predicting a target value (y), 
expressed as a combination of the characteristics. 

While nonlinear regression models are regression methods 
for finding nonlinear models for arbitrary relationships between 
dependent variables and a set of independent variables, this by 
using iterative estimation algorithms (IBM, n.d.) tags. The linear 
methods used are described in Table 3 and the nonlinear methods 
are described in Table 4.
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Table 3. Linear ML methods used, description and mathematical expression of the method. Source. Adapted from (Pedregosa et al., 2012).

METHOD DESCRIPTION MATHEMATICAL EXPRESSION

Ordinary 
least squares 
(OLS) linear 
regression

Fits a linear model with coefficients to minimize the residual 
sum of squares between the observed targets in the dataset and 
the targets predicted by the linear approximation. Coefficient 
estimates for ordinary least squares are based on the independence 
of features. When features exhibit multicollinearity, the design 
matrix becomes almost singular, and as a result, the least squares 
estimate becomes sensitive to random errors in the observed 
target, resulting in large variation.

Theil-Sen 
Regression 
(TheilSen),

Unlike OLS, Theil-Sen is a non-parametric method; It is a median-
based estimator that makes no assumptions about the underlying 
distribution of data, is more robust against corrupt data or outliers, 
can tolerate arbitrary corrupt data up to 29.3%.

RANSAC 
Regressor 
(RANSAC)

A non-deterministic algorithm that produces only a reasonable 
result with a certain probability, relying on the number of iterations 
for robust parameter estimation from a subset of internal values of 
the entire dataset. It is used for linear and nonlinear regression 
problems.

Huber 
Regressor 
(Huber)

It optimizes the quadratic loss for the samples where and the 
absolute loss for the samples where, where w and sigma are 
parameters to be optimized. The sigma parameter ensures that if 
it increases or decreases by a certain factor, it is not necessary to 
rescale epsilon to achieve the same robustness.

Table 4. Nonlinear ML methods used, description and mathematical expression of the method. Source. Adapted from (Pedregosa et al., 
2012).

METHOD DESCRIPTION MATHEMATICAL EXPRESSION

K-nearest 
Neighbours 
Regression 

(KNN)

KNN regression is a nonparametric method that intuitively 
approximates the association between independent variables 
and the continuous result by averaging observations in the same 
neighborhood. The analyst must set the size of the neighborhood, 
or it can be chosen by cross-validation to select the size that 
minimizes the root mean square error.

Random 
Forest 

Regressor 
(RFR)

It is based on a meta-estimator that fits a series of classification 
decision trees across multiple subsamples of the dataset and 
uses the average to improve predictive accuracy and control for 
overfitting.
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Preparation of datasets

For the time station, dataset 1 is distributed into a subset of 
90 projects for training ML models, and a subset of 12 projects for 
validation. Dataset 2 is distributed for cash flow estimation into 
a subset of 69 projects for training ML models, and a subset of 12 
projects for validation. 4 methods are proposed to perform training 
and estimation, methods 1 and 2 to estimate the advance or cash flow 
in a time interval T and methods 3 and 4 to directly estimate the ES-
Total or ESAC indicators. These training methods are illustrated in 
Figure 4 and described below: 

•	 Method 1 trains the ML model using the progress or cash flows of 
each of the T intervals as characteristics, to estimate the progress 
or flow of the next time interval T.

•	 Method 2 trains the ML model using the progress or cash flow of 
the last T interval as a feature, to estimate the progress or flow of 
the next T time interval.

•	 Method 3 trains the ML model using the progress or cash flow 
of the last T interval as a characteristic, to estimate the ES-Total 
indicator or the ESAC indicator.

•	 Method 4 trains the ML model using the progress or cash flows of 
each of the T intervals as characteristics, to estimate the ES-Total 
indicator or the ESAC indicator.
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Figure 4. (A) Training Method 1. (B) Training Method 2. (C) Training Method 3. (D) Training Method 
4. Source. Own elaboration.

4. Results

Estimated Progress and ES-total Indicator.

Using the proposed ML models, the results were obtained the 
estimates of progress for each time interval t; These estimates 
determine the quality of the model to replicate the results and 
the proportion of variation in the results using the coefficient of 
determination R² (Heinisch, 1962). For each of the models and each 
time interval t, R² values were obtained (Table 5), these values were 
up to 0.515 for 2t/10, 0.678 for 3t/10, 0.552 for 4t/10, 0.310 for 
5t/10, 0.429 for 6t/10, 0.423 for 7t/10, 0.655 for 8t/10, 0.645 for 
9t/10, 0.353 for t and 0.584 for STOTAL. Based on the R², the results 
obtained show an improvement in the prediction compared to the 
Markov chain model proposed by (Rudeli et al., 2017), in all time 
intervals except in the forecast of progress in the 6t/10 interval.
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Table 5. Coefficient of determination R² estimate of progress at each time interval.

Training Method 1

Model
Interval

2 t/10 3 t/10 4 t/10 5 t/10 6 t/10 7 t/10 8 t/10 9 t/10 t ES

OLS 0.515 0.602 0.552 0.299 0.073 0.173 0.169 0.430 0.065 0.440

TheilSen 0.515 0.602 0.537 0.287 0.006 0.229 0.245 0.401 0.048 0.348

RANSAC 0.515 0.602 0.488 0.288 0.025 0.376 0.301 0.620 0.101 0.584

Huber 0.515 0.603 0.528 0.294 0.037 0.254 0.226 0.645 0.157 0.539

KNNR 0.007 0.663 0.022 0.001 0.182 0.345 0.594 0.158 0.353 0.313

RFR 0.143 0.678 0.451 0.040 0.075 0.136 0.409 0.556 0.282 0.224

Markov 0.072 0.321 0.002 0.226 0.544 0.109 0.517 0.081 0.052 0.306

Training Method 2

Model
Interval

2 t/10 3 t/10 4 t/10 5 t/10 6 t/10 7 t/10 8 t/10 9 t/10 t ES

OLS 0.515 0.322 0.004 0.310 0.429 0.423 0.473 0.065 0.125 0.108

TheilSen 0.515 0.322 0.004 0.310 0.429 0.423 0.473 0.065 0.125 0.108

RANSAC 0.515 0.322 0.004 0.310 0.429 0.423 0.473 0.065 0.125 0.108

Huber 0.515 0.322 0.004 0.310 0.429 0.423 0.473 0.065 0.125 0.108

KNNR 0.007 0.379 0.027 0.163 0.099 0.000 0.641 0.022 0.003 0.119

RFR 0.143 0.178 0.049 0.239 0.160 0.059 0.655 0.061 0.003 0.267

Markov 0.072 0.321 0.002 0.226 0.544 0.109 0.517 0.081 0.052 0.306

In the same way, the prediction of the ES-Total obtained using 
training methods 3 and 4 presented R² coefficients (Table 6) with 
values for the estimates using 1t/10 of up to 0.434, 0.660 for 2t/10, 
0.639 for 3t/10, 0.586 for 4t/10, 0.590 for 5t/10, 0.506 for 6t/10, 
0.513 for 7t/10,  0.491 for 8t/10, 0.730 for 9t/10 and 0.584 for t. 
Taking into account that the R² values obtained are higher than the 
results of the estimates based on Markov models, evidencing that 
the use of ML techniques with training 3 and 4 may present a better 
prognosis compared to the previously proposed Markovian models.  
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Table 6. Coefficient of determination R² ES-total.

Training Method 3

Model 
Interval

t/10 2 t/10 3 t/10 4 t/10 5 t/10 6 t/10 7 t/10 8 t/10 9 t/10 t

OLS 0.434 0.640 0.284 0.073 0.041 0.005 0.159 0.105 0.306 0.108

TheilSen 0.434 0.640 0.284 0.073 0.041 0.005 0.159 0.105 0.306 0.108

RANSAC 0.434 0.640 0.284 0.073 0.041 0.005 0.159 0.105 0.306 0.108

Huber 0.434 0.640 0.284 0.073 0.041 0.005 0.159 0.105 0.306 0.108

KNNR 0.034 0.197 0.133 0.000 0.002 0.074 0.068 0.020 0.052 0.119

RFR 0.122 0.268 0.376 0.018 0.023 0.144 0.081 0.003 0.113 0.267

Training Method 4

Model 
Interval

t/10 2 t/10 3 t/10 4 t/10 5 t/10 6 t/10 7 t/10 8 t/10 9 t/10 t

OLS 0.434 0.657 0.530 0.560 0.590 0.506 0.513 0.491 0.544 0.440

TheilSen 0.434 0.660 0.478 0.533 0.520 0.458 0.479 0.473 0.522 0.348

RANSAC 0.434 0.576 0.639 0.586 0.537 0.047 0.230 0.014 0.730 0.584

Huber 0.434 0.655 0.564 0.496 0.508 0.485 0.496 0.448 0.614 0.539

KNNR 0.034 0.020 0.229 0.107 0.307 0.133 0.116 0.084 0.064 0.313

RFR 0.122 0.426 0.469 0.446 0.363 0.274 0.284 0.252 0.258 0.224

To evaluate the accuracy of the models in predicting progress 
and ES-total, in addition to testing the hypothesis based on the 
results of the coefficient of determination R², which indicates that 
the models and training methods implemented, can generate more 
accurate estimates compared to the previously proposed models. We 
calculated the percentage differences between the actual progress 
values for each verification construction project and the values 
estimated by the ML method that presented the best R² value. Figure 
5 (A) represents these deviations for training methods 1-2, and 
Figure (B) the deviations for training method 3-4, evidence that the 
latter training method presents the best results for the estimation of 
total SE.
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Figure 5. (A) Deviation Progress Intime Intervals Training Method 1-2. (B) Deviation ES-total 
Training Method 3-4. Source. Own elaboration.

Additionally, Table 7 lists these percentage differences in the 
average row, where the mean between the nine predicted progress 
intervals is 2.09%, and the average total SE is 10.98%. Table 8 lists 
the percentage differences in the average row, where the mean 
between the estimates of total ESwith respect to the nine-time 
intervals is 11.05%.

Table 7. Summary of the differences between actual and estimated progress Training Method 1-2.

M
et

ho
d

Measure
Interval

Average 
Interval2 t/ 10 3 t/ 10 4 t/ 10 5 t/ 10 6 t/ 10 7 t/ 10 8 t/ 10 9 t/ 10 t ES-total

1

Average 1.25 1.54 2.05 2.21 2.42 3.22 1.41 2.07 2.61 10.98

2.09Minimal 0.08 0.01 0.04 0.38 0.02 0.04 0.00 0.32 0.00 0.12

Maximum 2.55 2.94 3.78 6.51 4.86 7.72 3.17 4.28 7.46 44.34

2

Average 1.25 2.62 2.76 2.48 1.82 2.81 1.21 2.99 3.22 18.82

2.35Minimal 0.79 0.52 0.06 0.02 0.22 0.34 0.00 0.03 0.01 2.34

Maximum 11.79 7.10 5.30 5.12 4.05 6.27 3.73 7.12 6.98 36.83
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Table 8. Summary of the differences between the actual total SE and the estimated Training Method 3-4.

M
et

ho
d

Measure
Interval

Average 
ES-total2 t/ 10 3 t/ 10 4 t/ 10 5 t/ 10 6 t/ 10 7 t/ 10 8 t/ 10 9 t/ 10 t ES total

3

Average 19.95 19.12 11.53 10.57 6.38 16.52 8.09 6.47 4.56 18.82

12.20Minimal 11.41 7.16 0.34 0.03 0.31 0.08 0.10 0.20 0.76 2.34

Maximum 31.59 26.82 30.24 19.21 14.74 50.51 18.25 14.85 11.89 36.83

4

Average 6.29 7.00 18.31 6.49 12.21 11.47 10.25 14.82 12.74 10.98

11.05Minimal 0.96 0.54 1.19 0.56 0.27 0.04 0.93 2.29 0.11 0.12

Maximum 17.23 13.00 46.12 15.64 29.30 29.49 35.88 40.20 27.87 44.34

Cash Flow Estimation and SEAC Indicator

The results of the cash flow estimates in the time intervals using 
training methods 1-2 presented R² values (Table 9) of up to 0.916 
for t/10, 0.793 for 2t/10, 0.938 for 3t/10, 0.925 for 4t/10, 0.901 for 
5t/10, 0.988 for 6t/10, 0.915 for 7t/10, 0.935 for 8t/10, 0.943 for 
9t/10, 0.955 for t, 0.941 for ES and 1 for SEAC.
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Table 9. Coefficient of determination R² Estimate of cash flow at each time interval.

Method 1

Model
Interval

SEAC
t/10 2 t/10 3 t/10 4 t/10 5 t/10 6 t/10 7 t/10 8 t/10 9 t/10 t ES

OLS 0.660 0.793 0.934 0.862 0.634 0.783 0.915 0.935 0.943 0.790 0.875 1.000

TheilSen 0.425 0.058 0.592 0.230 0.457 0.988 0.883 0.857 0.064 0.843 0.144 1.000

RANSAC 0.420 0.017 0.916 0.280 0.486 0.938 0.818 0.927 0.097 0.644 0.001 1.000

Huber 0.432 0.775 0.934 0.848 0.636 0.779 0.895 0.933 0.941 0.803 0.895 0.829

KNNR 0.916 0.726 0.602 0.925 0.901 0.223 0.562 0.653 0.771 0.596 0.941 0.859

RFR 0.892 0.629 0.593 0.800 0.538 0.399 0.769 0.837 0.915 0.955 0.539 0.967

Method 2

Model
Interval

SEAC
t/10 2 t/10 3 t/10 4 t/10 5 t/10 6 t/10 7 t/10 8 t/10 9 t/10 t ES

OLS 0.660 0.701 0.938 0.787 0.372 0.387 0.839 0.777 0.846 0.951 0.006 0.442

TheilSen 0.425 0.701 0.938 0.787 0.372 0.387 0.839 0.777 0.846 0.951 0.006 0.442

RANSAC 0.420 0.701 0.938 0.787 0.372 0.387 0.839 0.777 0.846 0.951 0.006 0.442

Huber 0.432 0.701 0.938 0.787 0.372 0.387 0.839 0.777 0.846 0.951 0.006 0.442

KNNR 0.916 0.132 0.744 0.549 0.016 0.779 0.551 0.618 0.781 0.963 0.284 0.728

RFR 0.892 0.322 0.741 0.676 0.010 0.649 0.492 0.589 0.798 0.976 0.170 0.691

The results of the SEAC estimates using training methods 3 and 
4 presented R² coefficients (Table 10) with values for the estimates 
using 0t/10 up to 0.459, 0.861 for 1t/10, 0.862 for 2t/10, 0.864 for 
3t/10, 0.881 for 4t/10, 0.980 for 5t/10, 0.983 for 6t/10, 0.979 for 
7t/10, 0.980 for 8t/10, 0.968 for 9t/10, 0.970 for t and 1 for ES. 
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Table 10. Coefficient of determination R² SEAC.

Method 3

Model
Interval

0 t/10 t/10 2 t/10 3 t/10 4 t/10 5 t/10 6 t/10 7 t/10 8 t/10 9 t/10 t/10 ES

OLS 0.105 0.303 0.479 0.541 0.663 0.724 0.414 0.585 0.843 0.658 0.597 0.442

TheilSen 0.105 0.303 0.479 0.541 0.663 0.724 0.414 0.585 0.843 0.658 0.597 0.442

RANSAC 0.105 0.303 0.479 0.541 0.663 0.724 0.414 0.585 0.843 0.658 0.597 0.442

Huber 0.105 0.303 0.479 0.541 0.663 0.724 0.414 0.585 0.843 0.658 0.597 0.442

KNNR 0.392 0.000 0.767 0.692 0.369 0.859 0.266 0.471 0.870 0.558 0.678 0.728

RFR 0.459 0.052 0.855 0.709 0.624 0.851 0.509 0.490 0.841 0.719 0.663 0.691

Method 4

Model 
Interval

0 t/10 t/10 2 t/10 3 t/10 4 t/10 5 t/10 6 t/10 7 t/10 8 t/10 9 t/10 t/10 ES

OLS 0.105 0.109 0.774 0.803 0.881 0.977 0.974 0.976 0.971 0.968 0.970 1.000

TheilSen 0.105 0.001 0.264 0.605 0.632 0.790 0.781 0.758 0.832 0.735 0.744 1.000

RANSAC 0.105 0.114 0.355 0.824 0.484 0.639 0.983 0.822 0.773 0.740 0.625 1.000

Huber 0.105 0.235 0.783 0.804 0.877 0.980 0.983 0.979 0.980 0.840 0.440 0.829

KNNR 0.392 0.861 0.848 0.864 0.850 0.858 0.865 0.866 0.866 0.866 0.872 0.859

RFR 0.459 0.806 0.862 0.828 0.824 0.859 0.903 0.901 0.932 0.929 0.920 0.967

As for the progress and ES-total estimates, we calculated the 
percentage differences between the actual cash flow and ESAC values 
for each verification construction project and the values estimated 
by the ML method that presented the best R² value. Figure 6 (A) 
represents these deviations for training methods 1-2, and Figure (B) 
the deviations for training method 3-4. 
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Figure 6. (A) Cash Flow Deviation Intime Intervals Training Method 1-2. (B) SEAC Deviation 
Training Method 3-4. Source. Own elaboration.

Additionally, Table 11 lists these percentage differences in the 
average row, where the mean between the eleven forecasted cash 
flow intervals is 0.39%, and the average ESAC is 0.00%. Table 12 
lists the percentage differences in the average row, where the mean 
between the ESAC estimates for the eleven-time intervals is 3.61%.

Table 11. Summary of the differences between actual cash flow and estimated Training Method 1-2.

M
et

ho
d

Measure
Interval

Average 
Intervalst/ 10 2 t/ 

10
3 t/ 
10

4 t/ 
10

5 t/ 
10

6 t/ 
10

7 t/ 
10

8 t/ 
10

9 t/ 
10 t ES SEAC

1

Average 0.48 0.44 0.23 0.48 0.40 0.31 0.57 0.31 0.22 0.44 1.21 0.00

0.39Minimal 0.02 0.05 0.01 0.10 0.04 0.01 0.06 0.04 0.00 0.04 0.16 0.00

Maximum 2.67 2.02 0.51 1.06 2.31 1.94 4.12 1.18 1.10 3.09 2.28 0.00

2

Average 0.48 1.25 0.27 0.52 0.43 0.52 0.33 0.43 0.67 0.28 3.28 4.16

0.52Minimal 0.02 0.08 0.01 0.11 0.10 0.04 0.03 0.01 0.09 0.06 0.17 0.22

Maximum 2.67 2.55 0.84 1.27 1.43 2.94 1.11 1.03 1.55 0.49 16.54 11.51
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Table 12. Summary of the differences between the actual SEAC and the estimated Training Method 3-4.

M
et

ho
d

Measure

Interval
ESAC 

Average0 t/ 
10  t/ 10 2 t/ 

10
3 t/ 
10

4 t/ 
10

5 t/ 
10

6 t/ 
10

7 t/ 
10

8 t/ 
10

9 t/ 
10 t ES

3

Average 5.70 5.79 7.67 3.80 5.86 4.47 5.51 6.59 3.08 4.36 4.50 4.07

5.12Minimal 0.83 0.42 0.41 0.46 0.36 0.75 0.21 0.34 0.07 0.24 0.34 0.03

Maximum 16.41 26.56 53.07 12.75 21.03 12.73 19.25 12.91 10.76 20.04 20.89 15.13

4

Average 5.70 5.33 3.89 3.21 7.69 4.72 1.46 2.92 1.26 1.26 4.73 1.16

3.61Minimal 0.83 0.07 0.20 0.46 0.23 0.03 0.14 0.13 0.07 0.07 0.06 0.09

Maximum 16.41 34.12 25.80 13.87 74.96 42.24 2.62 19.56 3.89 4.12 45.92 4.93

5. Discussion

After performing the validation using the R² coefficient and 
the deviations, the results reveal that the proposed approach 
employing ML models predicts progress with a deviation of 2.09%.  
Furthermore, this methodology enables the forecasting of total 
Schedule Earned (ES-total) with a deviation of 11.05%. If we compare 
the performance of the forecasts obtained using ML methods with 
the results of previous studies using Markov chains, we can observe 
a noticeable improvement with respect to the R² going from 0.223 
on average to 0.511, the deviation of the progress forecast in the 
time intervals was also reduced from 2.47% to 2.09%.  However, the 
deviation from ES-total increased from 4.75% to 11.05%. 

The estimates of the total SE with the lowest deviations and the 
highest R² were obtained from the models trained with methods 
1-4 as illustrated in Figure 7 (A) and (B), these training methods 
are the ones that take for the estimation all the progress of all the 
intervals as characteristics to make the forecast.  and not only the 
progress of the immediately preceding interval like Markov models. 
Despite the improvement of the models with respect to R², the 
average deviation of the total ES obtained using the ML models is 
quantitatively lower than that obtained by Markov chains. The reason 
for this behavior is evidenced in Figure 7 C, where it is observed that 
the estimates obtained by ML manage to replicate the behavior of the 
tangible results. However, due to the high dispersion in the ES-total 
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data, the estimation can produce estimates at some points that are 
significantly different from the real value.  which makes the value 
higher when calculating the average deviations. 

In this way, it can be stated that the implementation of ML 
models offers the capability to make precise predictions regarding 
upcoming progress and the ES-total indicator, in addition to having 
the advantage of easy implementation compared to the models 
previously proposed, categorical variables such as typologies, risks, 
among others, can be included, which can allow forecasts to be even 
more accurate.

Figure 7. (A) Predictions ES-total Training Methods 2-3. (B) Predictions ES-total Training Methods 
1-4. (C) Actual and estimated total performance. Source. Own elaboration.

Using the ML models, an average R² of 0.837 was obtained for 
the prediction of the cash flow of the time interval t with a deviation 
of 0.39%, for ES of 0.941 with a deviation in the prediction of 1.21% 
and for the estimation of the SEAC an R² of between 0.459 and 1.0 
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was reached depending on the time interval where the estimation 
is made.  with average deviations of 3.61%. In the same way as in 
the time estimates, as can be seen in figure 8 (A), (B), (C) and (D), 
the most accurate forecasts were obtained using the models trained 
with methods 1-4, it can also be observed that the behavior of the 
data was assimilated by the model which allowed to obtain such 
low deviations.  A higher performance was also obtained from 
non-line models such as KNNR and RFR, due to the proximity and 
homogeneity of the observed points. This also represents a notable 
enhancement and the capacity to generate more precise predictions 
concerning future progress, cash flow, the ES-total indicator and 
ESAC. This enables more effective construction project management 
by offering the opportunity to advance address and rectify deviations.

Figure 8. (A) SEAC Predictions Training Methods 1-4. (B) Predictions ES-total Training Methods 
2-3. (C) Actual and estimated cash performance. (D) Actual and estimated SEAC behavior. Source. 

Own elaboration.
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6. Conclusions

The use of ML techniques represents enormous potential for the 
estimation of indicators in the construction sector, highlighting 
its ease of implementation compared to other statistical models. 
In addition, it has the great advantage of the possible inclusion 
of categorical characteristics specific to the work, levels of risks, 
particular conditions, among other categorical variables and more 
robust artificial intelligence methods that can improve predictions. 

The analyzed ML models can be implemented in a dataset created 
from the different scenarios that can occur in a particular work, 
which would serve as a control and early warning tool to prevent 
delays and cost overruns.

As a line of future research, the aim is to implement these 
ML techniques at the level of construction processes, and to train 
the models from data obtained not necessarily through on-site 
measurements and observations but using synthetic data from 
simulations of these processes.
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