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ABSTRACT

This paper describes the design of a programmable microsystem for processing digital audio effects implemented 
in an FPGA. The microsystem is designed using an application-specific reconfigurable processor, a bank of RAMs, and a 
graphical user interface based on an LCD touch panel. The processor is designed using 15 audio effects based on delays 
and dynamic domain and frequency domain processing. The effects are designed using Megafunctions and the Quartus II 
FIR compiler , simulated in Simulink using DSP Builder, and configured using a user graphic interface. The programmable 
microsystem is implemented on the DE2-70 development board, and its operation is verified using an MP3 player and a 
speaker. Additionally, the microsystem allows the generation of effects with high fidelity using a maximum sample rate 
of 195.62 MSPS and can be embedded into a SoC.
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       DISEÑO DE UN MICROSISTEMA PROGRAMABLE PARA EFECTOS 
DE AUDIO DIGITAL USANDO FPGAS

RESUMEN

Este artículo describe el diseño de un microsistema programable para el procesamiento de efectos de audio digital 
implementado en un FPGA. El microsistema es diseñado usando un procesador de propósito específico y reconfigurable, 
un banco de RAMs y una interfaz gráfica de usuario basada en una pantalla táctil LCD. El procesador es diseñado usan-
do 15 efectos de audio basados en retardos y procesamiento en el dominio dinámico y de la frecuencia. Los efectos son 
diseñados usando Megafunciones y el compilador FIR de Quartus II, son simulados en Simulink5 usando DSP Builder6, y 
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son configurados utilizando una interfaz gráfica de usuario. El microsistema programable es implementado en el sistema 
de desarrollo DE2-70, y su funcionamiento es verificado usando un reproductor MP3 y un parlante. Adicionalmente, el 
microsistema permite la generación de efectos con alta fidelidad usando una tasa de muestreo máxima de 195.62 MSPS, 
y puede ser embebido en un SoC.

PALABRAS CLAVES: efectos de audio digital; dominio dinámico; dominio de la frecuencia; sistemas embebidos; 
FPGAs.

PROJETO DE UM MICROSISTEMA PROGRAMÁVEL PARA EFEITOS DE 
ÁUDIO DIGITAL USANDO FPGAS

RESUMO

Este artigo descreve o desenho de um microsistema programável para o processamento de efeitos de auidio digital 
implementado em um FPGA. O microssistema é projetado usando um processador específico e reconfigurável um banco 
de RAMs  e uma interface gráfica de usuario baseada em uma tela sensível ao toque de LCD. O processador foi projetado 
com 15 efeitos de áudio com base em atrasos e domínio de processamento e frequência dinâmica. Os efeitos são projeta-
dos usando Megafunciones e o compilador FIR de Quartus II são simulados utilizando Simulink 1 usando DSP Builder2 e 
são configurados através de uma interface gráfica de usuario. O microssistema programável é implementado no sistema 
de desenvolvimento DE2-70, e seu desempenho é verificado através de um leitor de MP3 e um alto-falante. Além disso, 
o micro-sistema permite a geração de efeitos, com elevada fidelidade, utilizando uma taxa de amostragem máxima de 
195,62 MSPS, e pode ser incorporado em um SoC.

PALAVRAS-CHAVE: efeitos de áudio digital, de domínio dinâmico, domínio da freqüência, sistemas embarcados, FPGAs.

1.  INTRODUCTION

Audio effects are used by musicians to create 
special sounds when playing an instrument. These 
effects can be created using analog or digital process-
ing systems. Nowadays, digital audio effects are more 
widely used and are implemented with electronic sys-
tems that perform delay-based, dynamic domain, or 
frequency domain processing (Zölzer, 2002).

Digital audio effects are generally implemented 
on DSPs, PCs, or GPUs (Berdahl & Smith, 2006), (Fernan-
dez & Casajus, 2000), (Guillermard, Ruwwue & Zölzer, 
2005), (Karjalainen, Penttinen & Valimaki, 2000), (Ling, 
Khuen & Radhakrishnan, 2000), (Oboril et al., 2000), 
(Schimmel, Smekal & Krkavec, 2002), (Tsai, Wang & 
Su, 2010), (Verfaille, Zölzer & Arfid, 2006). However, 
the designs presented in the papers mentioned do not 
have high sampling rates, and the majority of the effects 
are based on delays. Pfaff et al. (2007) implemented 
the chorus, delay, echo cancellation, flanger, and wah-
wah effects using hardware-software co-design. The 
flanger effect was implemented using a lookup table 

to generate the sinusoidal signal, and the wah-wah 
effect was implemented using a second-order allpass 
filter and a lookup table to vary the cut-off frequency, 
but the study does not present verification tests of the 
designs on hardware. Byun et al. (2009) implement 
reverb, chorus, flanger, phaser, tremolo, auto wah, pitch 
shift, distortion, and multi-band equalizer effects using 
C language and an embedded DSP in an FPGA. However, 
this article does not describe the algorithms used to 
implement these effects in detail, nor does it present 
verification tests of the designs. In a previous study 
(Liévano, Espinosa y Velasco, 2013), we implemented 14 
audio effects using delay-based processing (5), dynamic 
domain processing (8), and frequency domain process-
ing (1). These effects are described in VHDL, simulated 
in Simulink using DSP Builder, and synthesized in an 
FPGA using Quartus II. 

Considering the information above, in this article 
we present the design of a microsystem for processing 
digital audio effects based on a dedicated and configu-
rable processor. The microsystem was implemented in 
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the development system DE2-70, and the processor was 
synthesized in this card’s FPGA. 

The main contribution of this article is the design 
of a digital audio effects processor in real time with 
very high fidelity due to the fact that it has a sampling 
rate of 195.62 MSPS using 16 bits of data. The sampling 
rate corresponds to the processor’s maximum operating 
frequency (195.62 MHz). In addition, the processor we 
designed allows for the generation of uncommon audio 
effects since it is possible to mix effects of different and/
or the same processing type. We implemented 15 audio 
effects on this processor, 14 of which were presented 
in Liévano, Espinosa & Velasco (2013). However, the 
chorus, reverb, and wah-wah effects were redesigned, 
and a multi-band equalizer was added. The microsystem 
verification tests were completed using an MP3 player 
and a speaker connected to the DE2-70 card’s audio 
input and output terminals, respectively. 

This article is organized as follows: section 2 de-
scribes the design methodology for the chorus, reverb, 
wah-wah, and multi-band equalizer effects; this section 
also presents the microsystem design and the graphical 
user interface. Section 3 presents the synthesis results 
and hardware verification tests. Finally, section 4 pres-
ents our conclusions.

2.  METHODOLOGY

The design of the hardware system for process-
ing digital audio effects was completed in four stages: 
a) selection and functional simulation of the effects in 
Simulink using DSP Builder; b) implementation of the 
effects on the hardware using Quartus II and verification 
of effects using Matlab to graph the output signals; c) 
design of the processor and tactile graphic interface for 
configuring the effects parameters; d) design and verifi-
cation of the microsystem for processing audio effects.

2.1.  Selection and functional simulation   

 of audio effects

The audio effects selected are delay-based or 
based on dynamic domain or frequency domain pro-
cessing. These effects are implemented in the proces-
sor, and 14 of them are described in (Liévano, Espinosa 
& Velasco, 2013). In addition, we added a multi-band 
equalizer and redesigned the chorus, reverb, and wah-

wah effects. The functional simulation of these audio 
effects was completed in Simulink using DSP Builder.

2.1.1 Delay-based processing  
Delay-based processing consists of adding the 

audio signal to itself, attenuated and/or out of phase. 
Five effects of this type were implemented on the pro-
cessor, in which delay, flanger, and phaser are described 
in Liévano, Espinosa & Velasco (2013), and chorus and 
reverb are described below.

Chorus is described by Equation 1 and is an 
effect that emulates two or more musicians simultane-
ously playing the same instrument and the same piece of 
music (Zölzer, 2002). This effect is obtained by adding 
the current input signal with a previous input signal 
attenuated by random factor g.

                y (n) = x(n)+ g * x (n + del)      (1)
In which  is the delay between 10 and 25 ms.                        
The reverb effect is described by Equation 2 and 

is generated when the audio signal’s acoustic reflexes 
are added to the audio signal. This effect is emulated by 
adding the input signal with its respective responses, 
which have different delays and attenuations (Zölzer, 
2002).  

y(n) = x(n)+g1x(n+del)+g2 x(n+2del)+g3 x(n+3del) 
+ g4 x(n+4del)                                                                               (2)

2.1.2 Dynamic domain processing

This type of processing is generally non-linear 
and considers the signal’s dynamic. Eight effects were 
implemented on the processor: compressor, expander, 
noise gate, soft and hard clipping, sigmoidal distortion, 
sigmoidal piecewise distortion, polynomial distortion, 
and ring modulator, which are described in Liévano, 
Espinosa & Velasco, (2013).

2.1.3 Frequency domain processing  

Frequency domain processing is based on 
modifying the sound spectrum using digital filters 
(Khosravi, 2007). Two effects were implemented on 
the processor: wah-wah and multi-band equalizer. The 
wah-wah effect is obtained by filtering the input signal 
using a narrow band-pass filter with a variable central 
frequency, which generates a sound similar to the word 
‘wah-wah’ (Zölzer, 2002). The multi-band equalizer 
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effect modifies the audio spectrum of a signal through 
the amplification of certain frequency bands. This effect 
is implemented using first- and second-order shelving 
and peak filters which are connected in series and in-
dependently controlled. The shelving filters amplify or 
attenuate the high and low frequency bands using the 
cutoff frequency parameters fc and gain G. Peak filters 
amplify or attenuate medium frequency bands using 
the cutoff frequency parameters fc, band width fb, and 
gain G (Zölzer, 2002).

2.2.  Implementation on hardware and   

 verification of audio effects

2.2.1 Chorus and reverb implementation

These effects use a circular buffer which is 
implemented on a dual-port RAM (Altera, 2011). The 
write and read directions on the 16Kx16-bit RAM are 
generated by a 14-bit counter. In this case, read used 
an indexed direction in which the index is the delay 
described by Equation 3 (see Figure 1). 

del
retardo = * fs (3)

1000

Figure 1. Circular buffer block diagram

Counter RAM

+

X (n)

Delay

Write-Dir

Read-Dir

X (n+del)

The chorus effect is designed using a circular 
buffer, an adder, a right-shifter, a low-frequency NCO, 
and an LFSR (Pérez, 2006) as shown in Figure 2. In a 
previous study (Liévano, Espinosa & Velasco, 2013), the 
chorus effect delay is implemented using an LFSR, but in 
this study the delay is implemented with an NCO given 
that Pérez (2006) recommends using an LFO. 

Figure 2. Chorus block diagram

+

X(n)

Y(n)

NCO

Circular 
Buffer

R- Shifter
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g

The reverb effect is designed using four circular 
buffers, four right-shifters, a low-pass IIR filter, and 
four adders (Pérez, 2006) as shown in Figure 3. In 
this case, four configurable values were used for the 
attenuation and delay in order to emulate the input 
signal’s acoustic reflexes. The first values for attenua-
tion and delay are configuration parameters, and the 
other values are generated by multiplying the first 
values by 2, 4, and 8. The IIR filter was implemented 
using Equation 4.

Y(n) = 0.4y(n) – 0.2499y(n-2) + 0.0441y(n-3) + 
0.5814x(n-1) + 0.2142x(n-2)                                                (4)

Figure 3. Reverb block diagram 

In a previous study (Liévano, Espinosa & Velasco, 
2013), the reverb effect was implemented without us-
ing an IIR filter, but in this study we used a low-pass 
IIR filter in order to obtain a realistic emulation of the 
reverberation (Pérez, 2006).

2.2.2 Wah-wah implementation

The wah-wah effect is implemented using a 
30-order band-pass FIR filter, which is designed us-
ing a Hamming window, a symmetrical architecture, 
a configurable central frequency, and a bandwidth of 
1000 Hz. In this case, the FIR filter is configured from 
the touch screen (see Figure 11), specifically by varying 
the wah-wah control icon and selecting one of the FIR 
filters presented in Table 1. For example, FIR filter 6 has 
lower and upper cutoff frequencies of 750 Hz and 1750 
Hz, respectively. Therefore, the wah-wah sound will be 
generated if the audio signal is within the respective 
window of the selected filter.

+
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The 30-order FIR filter’s implementation on the 
hardware used 16 coefficients and was designed using 
Altera’s FIR Compiler 10.1 (Altera, 2013). In this design, 
16 16x16-bit RAMs were used to store the 16 coefficients 
for each of the 16 filters presented in Table 1, in which 
the coeff-set signal is the direction for selecting the fil-
ter coefficients. Figure 4 shows a block diagram of the 
configurable FIR filter.

Table 1. Wah-wah low-pass filter configuration 
parameters

Filter Coeff-set
Lower cutoff 

frequency (Hz)
Upper cutoff 

frequency (Hz)

1 0000 1.000 ---------

2 0001 150 1.150

3 0010 300 1.300

4 0011 450 1.450

5 0100 600 1.600

6 0101 750 1.750

7 0110 900 1.900

8 0111 1.050 2.050

9 1000 1.200 2.200

10 1001 1.350 2.350

11 1010 1.500 2.500

12 1011 1.650 2.650

13 1100 1.800 2.800

14 1101 1.950 2.950

15 1110 2.100 3.100

16 1111 2.250 3.250

Figure 4. Wah-wah block diagram.
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2.2.3 Implementation of multi-band equalizer

Holters & Zölzer (2006) propose designing a 
three-band digital parametric equalizer using a sam-
pling rate of 48 kHz. The equalizer is implemented as a 
cascade of shelving filters. In this case, we designed the 
multi-band equalizer to attenuate or amplify compo-
nents of low, mid-low, mid-high, and high frequencies. It 
is implemented using four 100-order FIR filters and four 
configurable displacement registries. One low-pass and 
three band-pass filters are used. They are designed with 
a Blackman window using an FIR Compiler, and their 
cutoff frequencies are presented in Table 2. The L-R 
shifter displacement registries amplify or attenuate the 
output signal of the FIR filters, multiplying or dividing 
the signal by 2n, where n is equal to one or two. Figure 
5 shows a block diagram of the multi-band equalizer.

Table 2. Multi-band equalizer FIR filters 

Filter
Lower cutoff frequency 

(Hz)
Upper cutoff 

frequency (Hz)

1 125 ------------

2 125 500

3 500 2.000

4 2.000 20.000

Figure 5. Multi-band equalizer block diagram

Filter 1

Filter 2

Filter 3

Filter 4

L-R shifter

L-R shifter

L-R shifter

L-R shifter

+

X(n)

Y(n)

The design of each audio effect was verified by 
calculating the correlation between the results of the 
functional simulation in DSP-Builder, which uses a 64-bit 
floating-point arithmetic, and the results of the verifi-
cation with hardware, which used 16-bit fixed-point 
arithmetic. In this case, the error was calculated using 
Equation 5, in which Ym*Yr is the correlation between 
the simulation results and the hardware verification 
tests.

                error = 100 × (1- (Ym * Yr)) (5)
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The processor is designed using a data flow unit 
and a control unit, as is shown in Figure 6. The data flow 
unit is designed using an arrangement of digital audio 
effect blocks (FX Arrangement) and a bank of RAMs for 
storing each block’s effect configurations. The control 
unit is designed using a state machine (FSM) described in 
behavioral VHDL. In addition, the processor has a serial 
input registry and 16-bit parallel output (Reg-In) for stor-
ing the input signal Xi ,and a 16-bit parallel input registry 
and serial output (Reg-Out) for storing the output signal Yi.

The FX arrangement is implemented using 10 
digital audio effect blocks, FX1-FX10, connected in a 
cascade, as is shown in Figure 7. The order or sequence 
of the cascade of effect blocks corresponds to that used 
by commercial pedal manufacturers (Sound Laboratory 
Zoom, 2013). The two effect blocks adapt the signal to 
be processed by the other blocks; that is, the noise gate 
effect eliminates the signal noise, and the compres-
sor/expander block compresses or expands the signal 
according to its voltage level. The order of the ring 
modulator, phaser/flanger, chorus, and delay effects is 
irrelevant. The multi-band equalizer and reverb effects 
improve the audio signal processed by the previous 
effects. The wah-wah effect comes at the end of the 
cascade because its implementation requires many area 
resources, which implies that the signal is degraded 
when this block is located among the other effects. The 
majority of the blocks have one effect, except blocks FX2, 

FX3, and FX6, which have 2 or 3 effects. The blocks are 
configured using 10 registries, RC1-RC10, which store 
the 16-bit configuration word for each effect, and the 
output of each block is connected to a multiplexer, which 
allows us to select the input signal for the next block. In 
other words, the multiplexers allow us to select the set 
of effect blocks that process the input signal Xi.

The memory bank is made up of 10 RAMs, and 
each RAM has 32 16-bit words, where each word stores 
an audio effect configuration. For example, if a block has 
only one effect, this effect can have 32 configuration 
options. The first 16 positions of each RAM store the 
predetermined configurations for each effect block using 
a .mif file, and the last 16 positions of each RAM are used 
to store the new configurations developed by the user. 

The effect configuration in each of the Mi RAMs 
is completed using the write signal WE, the direction 
signal Dir, and the 16-bit configuration word obtained 
from the Mod-Par-FX block, which is based on compara-
tors and multiplexers, as shown in Figure 8.

We can see in Figure 8 that modifying one of 
the effect configuration word parameters is done if 
the values of the signal FX&Mpar (FX effect and Mpar 
parameter) and the constant Consti are equal. If this is 
not the case, the configuration word is not modified. 
We can also see that the FX effect code has 4 bits, the 
parameter Mpar code has 3 bits, the parameter value 

Figure 6. Digital audio effects processor architecture
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Nmpar has 2, 3, or 4 bits, and each constant Consti has 7 
bits, where i is a whole number between 1 and 4.

The processor’s control unit is implemented 
using the FSM1 state machine, which controls the user 
interface’s LCD touch screen sonsor  and generates the 
control signals for the FX arrangement, the Mod-Par-
FX block, and the bank of RAMs. The FSM1 constantly 
supervises the graphical interface’s graphic objects or 
icons in order to generate the control signals that al-
low for modification of an effect’s configuration word. 
This procedure is completed in four steps: 1) loading 
one of the 16 predetermined configurations in each RC 
configuration registry for each effect block, 2) select-
ing the set of audio effect blocks in the FX arrangement 
that will process the digitalized audio signal X(n) using 
signals C1-C10, 3) loading the new configuration deter-
mined by the user in the RAM that corresponds to the 
effect block (his configuration is made by modifying a 
predetermined configuration found in one of the RAM’s 
first 16 positions or by generating a new configuration 
to be stored in one of the RAM’s last 16 positions), and 
4) loading the new configuration from the RAM into the 
RC registries; that is, a predetermined configuration, a 
modified predetermined configuration, or a new con-

figuration. Figure 8 shows the ASM (Algorithmic State 
Machine) diagram of the FSM1.

Figure 9 shows that the control signals Ini-Conf 
and Fin-Conf are used to initiate and finalize a new con-
figuration, respectively. These two signals are generated 
by the used from the touch screen using the LTM-SoPC 
controller (Altera, 2011a).

2.4.  Design of hardware microsystem for   

 processing audio effects

In order to use the processor in a real applica-
tion, we designed a processing microsystem for the 
electric guitar, which is implemented using a hardware 
unit and a graphical user interface based on an LCD 
touch screen to configure the processor designed. The 
hardware unit is implemented in the Terasic DE2-70 
development system using the FPGA, the codec, and 
the DRAM memory. In the FPGA, we synthesized the 
audio effects processor, three ROM memories, and the 
LTM-SoPC controller for the LCD touch screen (LTP: 
LCD Touch Panel) as shown in Figure 10.

Figure 7. Audio effects processor FX arrangement
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Figure 9. ASM diagram of FSM1

The graphical user interface is designed using 

the FSM2 state machine which generates pixels on the 

LCD touch screen corresponding to the images for the 

background and the fixed and variable graphic objects. 

The latter are generated by the hardware unit and could 
be, for example, the image for sound volume. 

The FSM2 controls generation of the images 
using information stored in the three ROM memories 
and completes the transfer of the images to the RAM 
memory and the LCD touch screen using the LTM-SoPC 
controller.

Figure 11 shows the graphical user interface, 
which includes the following graphic objects and their 
respective visualizers: effects, parameter, parameter 
value, sector, patch, volume, wah-wah control, and save. 
An effect’s parameter is modified by selecting a sector 
and a patch, which can be used to direct the position of 
the RAM memory where the new effect configuration 
word will be stored. 

The graphical interface has sectors A, B, C, and 
D to select the 32 configuration words. Each sector has 
eight memory positions, and each position in the sector 
is called a patch. Sectors A-B and C-D allow the user to 
direct the first 16 and last 16 positions on the Mi RAM, 
respectively. 

The parameter of an effect’s configuration word 
is modified as follows: 1) selecting one of the ten effect 
blocks; 2) selecting the parameter, and 3) modifying the 
parameter value. Figure 12 shows the graphical user 
interface displayed on the LCD touch screen.

Figure 8. Block diagram of effect parameters configuration
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Figure 10. Audio effects microsystem block diagram
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2.5.   Verification of the microsystem for   

 processing audio effects

The microsystem is verified using an MP3 player 
and a PC. Initially, each of the processor’s effect blocks 
were verified, and then functioning verifications were 
completed for two sets of effects connected in cascade. 
To verify each effect in the processor, we used an audio 
signal stored in an MP3 player whose audio output was 
connected to the analog input of the DE2-70 develop-
ment system’s codec. Figure 13 shows the test audio 
signal in the codec’s input, which was configured to 
sample the signal at a frequency of 44.1 kHz. The 16-
bit Xi digitalized audio signal is then obtained from 
the codec’s output. This signal has a two’s complement 

representation format and is used as the input signal 
for the processor.

Figure 12. User interface visualized on LCD touch screen
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Figure 13. Audio signal at codec analog input
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Figure 14. Reverb effect output signal: a) Matlab 
simulation. b) processor.
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The output signal Yi from the audio effect proces-
sor is connected to the codec’s digital input. The codec’s 
analog output is connected to the audio input of a PC. 
The analog signal generated by the codec is digitalized 
by the PC’s codec, and this signal is graphed using Mat-
lab. Figure 14 shows the reverb effect’s output signal 
simulated in Matlab using a sinusoidal signal as input 
and the processor’s output signal Yi for the same effect 
using the audio signal as input.

We can observe in Figure 14 that the reverb ef-
fect’s output signal simulated in Matlab is similar to the 
processor’s output signal for the same effect.

3.   RESULTS  

The audio effect processor, the three ROM 
memories, the FSM2 state machine, and the LTM-SoPC 
controller are synthesized on the EP2C70F896C6 FPGA 
using 30,040 ALUTs (Adaptative Look-Up Tables) and 
10,239 registries which correspond to 44% and 15% 
of the FPGA’s area resources, respectively. The proces-
sor’s maximum operating frequency is 195.62 MHz. In 
addition, Table 3 presents the area resources used in 
the FPGA for each audio effect block with regards to 
the microsystem’s total resources. We can conclude 
from the results in Table 3 that the chorus effect uses 
the least area resources, while the wah-wah effect uses 
the greatest amount of area resources, corresponding 
to 80% of the microsystem’s total resources.  

Table 4 shows the area resources of the micro-
system’s blocks in the FPGA and the percentage of area 
resources for each microsystem block with regards to 
the microsystem’s total area resources. We can conclude 
from these results that the FX arrangement block uses 
the greatest amount of area resources, which is 92% 
for ALUTs and 62% for the registries.

In order to experimentally verify (an auditory 
procedure) the microsystem’s functioning for process-
ing audio effects, we implemented two processor con-
figurations and used two signals: a sinusoidal signal 
and a song played on an MP3 player, shown in Figures 
15 and 16, respectively.
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Figure 15. Sinusoidal signal
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Figure 16. Song played on MP3 player
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The first processor configuration consists of 

connecting in cascade the noise gate, hard clipping, and 

delay effects, whose operation parameters are: thresh-

old 0.1, threshold 0.4, and delay 10 ms, respectively. 

The processor’s output signals for this configuration, 

using the sinusoidal signal and the song as inputs, are 

graphed in Matlab. These are shown in Figures 17 and 

18, respectively.  

Figure 17. Processor output signal for first configuration, 
sinusoidal input
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Table 3. Audio effects area resources

Compressor ALUTs % of ALUTs in microsystem Registries % of registries in microsystem

Expander 84 0.28 50 0.49

Noise gate 84 0.28 50 0.49

Soft and hard clipping 65 0.22 48 0.47

Sigmoidal distortion 80 0.27 49 0.48

Sigmoidal piecewise distortion 1225 4.08 891 8.70

Polynomial distortion 231 7.69 131 1.28

Ring modulator 64 0.21 63 0.61

Delay 539 1.79 405 3.95

Chorus 49 0.16 49 0.48

Flanger 44 0.15 44 0.43

Reverb 534 1.78 390 3.81

Phaser 214 0.71 49 0.48

Wah-wah 516 1.72 386 3.77

Wah-wah 24009 79.92 3743 36.55
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Figure 18. Processor output signal for first configuration, 
song input
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The second processor configuration connects 
in cascade the compressor, soft clipping, ring modula-
tor, and reverb effects, whose operation parameters 
are: threshold 0.4 and attenuation 0.6; threshold 0.6; 
sinusoidal with frequency of 150 Hz; and attenuation 
4 and delay 15 ms, respectively. The processor’s output 
signals for the second configuration, using the previ-
ous signals, are graphed in Matlab. These are shown in 
Figures 19 and 20, respectively.

Figure 19. Processor output signal for second 
configuration, sinusoidal input 
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Figure 20. Processor output signal for second 
configuration, song input
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From Figures 17 through 20, we can observe 
that the test signals are modified by the audio effects 
programmed in the processor; that is, digitalized input 
signal Xi is processed by the respective sequence of 
effects. However, in order to verify the correct process-
ing of the effects configured in the processor, we must 
complete a digital processing of the output signal using 
the transformed FFTs or Wavelets, or we must consult 
someone with an excellent musical ear.

Considering the literature reviewed, a similar 
audio effect processor implementation is presented by 
Pfaff et al. (2007). In this study, a processor synthesized 
in the EP2C35F FPGA was designed using hardware/
software co-design, and five effects which could be 
configured by the user were implemented. However, our 
processor has more effects, and they are organized in 
an order that allows us to complete correct processing 
of the audio signal. In addition, the authors mentioned 
do not present synthesis and verification results. It is 
therefore not possible to make a real comparison with 
our processor. 

Table 4. Block area resources in programmable microsystem for digital audio effects 

Block ALUTs
% of ALUTs in 
microsystem

Registries
% of registries in 

microsystem

FX arrangement 27738 92.34 6348 62.00

Mod_par 278 0.92 0 0

Control Unit 2025 6.74 3891 38.00
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4.  CONCLUSIONS

This article presents the implementation of a 
microsystem for processing digital audio effects based 
on an application-specific reconfigurable processor. 
The main advantage of this microsystem in compari-
son to implementations based on DSPs, PCs, or GPUs is 
that it allows us to obtain a very high sampling rate to 
process high-quality audio in real time. In other words, 
the hardware system based on the digital audio effect 
processor could be used professionally.

In addition, the user can generate uncommon 
audio effects due to the fact that he or she can configure 
a chain of effects of the same type. This is due to the 
ease and flexibility of modifying the effect parameters 
and the processor’s low processing latency. 

The processor is configured using a graphical 
user interface based on an LCD touch screen. In this 
case, the user can select one of the 16 predetermined 
audio effect configurations or store 16 new configura-
tions. This interface projects the system as a prototype 
that could generate an FPGA-based commercial product.

The microsystem is described in VHDL, synthe-
sized in the EP2C70F896C6 FPGA, and implemented 
in the DE2-70 development system with an LCD touch 
screen. The synthesis and verification tests on hard-
ware allow us to conclude that the audio effects proces-
sor has a maximum sampling rate of 195.62 MSPS and 
that it can be used as an embedded core in an SoC for 
audio applications, for a pedal, for example.
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