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ABSTRACT
This article shows different algorithms for estimating parameters in nonlinear models. They are applied primarily 

to a database of problems classified as difficult. Later, the article shows the behavior of the algorithms for the study of 
growth in the anchovy and sardine, and males and females of the common hake by adjusting a Von Bertalanffy model. 
The Cerrato test is applied for growth comparisons between sexes for the common hake. The algorithms are imple-
mented in a MATLAB environment, showing good behavior regarding CPU time, number of iterations and exactitude in 
the solution found with respect to certified values of the problems in the database.
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ESTIMACIÓN DE PARÁMETROS EN MODELOS NO LINEALES: 
ALGORITMOS Y APLICACIONES

RESUMEN
En este artículo se muestran diferentes algoritmos para estimar parámetros en modelos no lineales. Se aplican 

primeramente a una base de datos de problemas clasificados difíciles. Posteriormente, se muestra el comportamiento de 
los algoritmos para el estudio de crecimiento de la merluza común en machos y hembras, anchoveta y sardina común 
ajustando un modelo de Von Bertalanffy. Se aplica el test de Cerrato para la comparación de crecimientos entre géneros 
para la merluza común. Los algoritmos se implementaron en ambiente MATLAB presentando un buen comportamiento 
en cuanto a tiempo CPU, número de iteraciones y exactitud de la solución encontrada respecto de valores certificados de 
los problemas de la base de datos.

PALABRAS CLAVE: Regresión no-Lineal; Métodos Cuasi-Newton; Métodos de Región de Confianza; Mode-
los de Crecimiento.
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The importance of this application lies in being able 
to scientifically predict certain aspects related to the 
exploitation of this resource and the possibility of 
understanding spawning, catch or recruitment sea-
sons, which are of vital importance for sensible ma-
nagement of marine resources. Finally, in section 5 
some conclusions about this project are given.

2.    GENERAL SHAPE OF NONLINEAR 
REGRESSION MODELS

Nonlinear regression models are very similar 
in their general form to linear regression models. 
Each observation yi is written in terms of the nonli-
near response function f(xi ; θ) and a random error 
term of εi. For the error term εi it is assumed that it is 
a normal independent variable σ2 with the variance 
(Draper & Smith, 1966; Neter et al., 1996). An im-
portant difference in nonlinear regression models is 
that the number of regression parameters θ is not 
directly related to the number of variables xi in the 
model. The general form of a nonlinear regression 
model will be the following:

yi = f (xi ;θ)+εi ;ε∼N(0,σ2)               (1)

where xi(m×1) = [xi 1 xi 2 ··· xi m] ; θ(n×1) = [θ1  
θ2 · · · θn] correspond to the data vector and para-
meters respectively, and ∼ N (0, σ2) is the distri-
bution of normal probabilities with median 0 and       

ESTIMATIVA DE PARÂMETROS EM MODELOS NÃO LINEARES: 
ALGORITMOS E APLICAÇÕES 

RESUMO
Neste artículo se mostram diferentes algoritmos para estimar parâmetros em modelos não lineares. Aplica-se pri-

meiro a um banco de dados de problemas classificadas difíceis. Subsequentemente, se mostra o comportamento de algo-
ritmos para o estudo do crescimento da Pescada comum em  machos e fêmeas, anchova e sardinha comum ajustando um 
modelo de Von Bertalanffy. Que aplica o teste de Cerrato para a comparação do crescimento entre gêneros para a pescada 
comum. Os algoritmos se programaram em ambientes MATLAB apresentando um bom desempenho em termos de tempo 
de CPU, número de iterações e precisão da solução encontrados valores certificados dos problemas do banco de dados.

PALAVRAS-CHAVE: Regressão não linear; Métodos Quasi-Newtown; Métodos da região de confiança; modelos de 
crescimento.

1.    INTRODUCTION

In the majority of the studies that involve data 
it is necessary to conduct estimations. For example, 
to estimate demand for certain products, to estimate 
parameters in biological growth models, in chemical 
reactions, etc. The applications are extremely varied 
in all spheres of knowledge: engineering sciences, 
social sciences, medicine, ecology, botany, political 
science, finance, among others. These estimations 
are studied through models that depend on a joi-
ning of experimental parameters and data. We must 
determine the best model under a certain criterion, 
generally least squares. Therefore, the desire exists 
to know about algorithms that possess certain con-
vergence properties that permit, in a reasonable 
calculation time, parameter estimation, especially if 
the model studied is nonlinear in its parameters. In 
this article, we will show some algorithms and their 
principal characteristics that allow us to estimate 
parameters in nonlinear models. The article is orga-
nized in the following manner: in section 2 we study 
the most relevant aspects of algorithms utilized in 
the general problem of parameter estimation. Sec-
tion 3 shows the performance of the algorithms on 
a database of problems categorized as difficult. Sec-
tion 4 shows a study on the fishing sector in which 
the aim is to estimate the growth parameters for an-
chovies, the common sardine and the common hake. 
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θk+1= θk−((J(θk)t J(θk))−1 J(θk)t f(θk), ∀k    (9)

Note that in this case we have considered a step 
size αk=1,∀k. However, in the previous iteration we 
can consider a variable step size in each iteration. 
For that reason, a step size of αk is considered gi-
ven by Armijo, Goldstein, Wolfe or Thuente. See, for 
example, Nocedal & Wright (1999) which provides 
the origin of the dampedGauss-Newton method.

2.1. Quasi-Newton methods

Quasi-Newton methods consist of approxima-
ting the Hessian matrix of each iteration by way of 
recurrence formulas that relate to the value it takes 
in preceding iterations, see Bonnans et al. (2002).  
The search direction in the Newton method requires 
the calculation of the Hessian matrix and that it be 
inversible, which cannot be guaranteed in the cour-
se of the iterations. This entails a great force from 
the computational point of view in the calculation 
of this matrix. With the aim of getting around these 
difficulties the Quasi-Newton methods approximate 
the matrix ∇2 f (θk) by a matrix defined B positive, 
which is modified in each iteration and converges 
at the true Hessian matrix, see Coleman (1984), 
Frandsen et al. (2004), Lange (2004). The Quasi-
Newton methods have proved to be quite efficient 
in nonlinear optimization and play an important 
role in many implementations.  Furthermore, this 
type of method, as opposed to those of Newton, has 
a superlinear convergence rate, which frequently, 
from a computational standpoint, is more efficient 
in the end than the Newton analytical method, see 
De la Fuente O’Conor (1995), Luenberger (1984). 
In these methods, the iterations can be more com-
putationally costly; however, the information stored 
in the Hessian approximation may be able to reduce 
the total number of iterations compared with other 
traditional methods (Nocedal & Wright, 1999). Let’s 
consider the solution of the system 

Bkdk=−∇f(θk)                          (10)

where Bk is a positive defined square matrix. 
Another way to present the quasi-Newton methods 

variance σ2. To determine the parameters, we solve 
the following optimization problem: minimize the 
sum of squared errors, ei, where we define ei = yi − f 
(xi , θ) as the ith error term

m
2S(θ)= � [yi−f(xi ,θ)]2 = �y−f (θ)� 2  (2)

i=1

with y = (y1, y2 ,..., ym)t; fi(θ) = f(xi ,θ); f(θ) 
= (f1(θ), f2(θ)..., fm(θ))t. Note that (2) corresponds 
to an unrestricted optimization problem, which can 
be solved by any general optimization method; see, 
for example, De la Fuente O'Conor (1995), Fletcher 
(1980), Nocedal & Wright (1999). However, given 
the particular shape of (2), methods have been crea-
ted for exploiting the special structure of this type 
of problem. The Jacobian matrix J of S(θ) is given by

∂f(θ)
J(θ)= =[∇f1(θ) ∇f2(θ)...∇fm(θ)]t∈ IR m×n (3)

∂θt

Linearizing   fi(θ) at point one θk has the linear 
system 

f(θk)+J(θk) d=0                          (4)

With d= θ−θk . In the case of m=  n y J(θk) non-
singular and  the previous linear system brings us to 
the Newton-Raphson method 

θk+1= θk−J(θk)−1 f(θk)                       (5)

If m ≠ n or J (θk) is singular, (4) might not have 
solutions. Therefore, it is only natural to replace (4) 
with the problem of linear least squares

mín �f(θk)+J(θk)d�2 (6)d∈IRn 2

which can be considered a linearization of 
(2). The minimum norm solution in the previous 
sub-problem is the Gauss-Newton step

dGN=−(J(θk)) † f(θk) (7)k

where (J(θk))† is the Moore-Penrose generali-
zed inverse of J(θk). If J(θk) is the complete column 
range, then the Gauss-Newton direction is written as

dGN=−((J(θk)t  J(θk))−1 J(θk)t f(θk) (8)k

by obtaining the Gauss-Newton (G-N) method.
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is through the approximation of the inverse of the 
Hessian, meaning B = H−1. Like any iterative method 
and according to what was previously mentioned, 
this depends upon an initial approximation. In this 
case an approximation is also needed for the Hes-
sian, or B0 initial, which frequently can be taken as 
the identity matrix B0=I if more information does 
not exist. In addition, B0 can be considered a mul-
tiple of the identity matrix, meaning B0 = ηI, for a 
η > 0. The Hessian matrix is updated based on the 
following structure (Nocedal y Wright, 1999):

Bk+1 = Bk +Uk,      k =0,1,...            (11)

where Uk is the expression that approximates 
the true Hessian matrix. Let’s look at two possible 
strategies. One condition to define Bk is, looking 
Frandsen et al. (2004), Luenberger (1984), Nocedal 
& Wright (1999):

Bk+1(θk+1−θk)=∇f(θk+1−∇f(θk))         (12)

This condition is known as the secant condi-
tion, which is based on a generalization of the one-
dimensional secant method, where the Hessian 
matrix ∇2f(θk) is replaced by an approximation Bk. 
Defining Sk = θk+1− θk = αkdk and yk = ∇f(θk+1)−∇f(θk) 
one obtains Bk+1Sk = yk . The secant condition (Kelley, 
1995) is satisfied if:

ST yk  >0 (13)k

which is known as the curvature condition1 
(Frandsen et al., 2004). The update matrix Bk can 
be calculated by different methods. Below are two 
methods for updating said expression. This method 
was developed by Broyden, Fletcher, Goldfard and 
Shanno, known as BFGS, and takes the following 
form. See Fletcher (1980), Frandsen et al. (2004), 
Luenberger (1984):

(BkSk)(BkSk)T yk yk
T

Uk = − + k = 0, 1, ... (14)
Sk

TBkSk yk
TSk

 One of the most intelligent schemas for the 
construction of the inverse of the Hessian was ori-

1 The condition of the secant always has a solution if 
the curvature condition is valid.

ginally proposed by Davidon and later developed 
by Fletcher and Powell, known today as DFP. The 
update is given by (ver Fletcher (1980), Frandsen  et 
al. (2004), Luenberger (1984));

SkSk
T Hk  yk yk

THkUk = Hk + – , k = 0, 1, ... (15)
Sk

T yk yk
THk yk

2.2. Trust region

Trust region methods offer a framework for 
guaranteeing algorithm convergence. They were 
first used to solve nonlinear least squares problems 
and later were adapted for more general optimiza-
tion problems. These methods explicitly make re-
ference to a model of the objective function. In the 
Newton method, this model is quadratic and is ob-
tained from the Taylor series of f around point xk. 
The method will “believe” in this model only in the 
vicinity of point θk, defined by the restriction �p�≤ 
Δk. This will serve to limit the size of the step from 
θk to θk+1. The value of Δk is adjusted based on agre-
ement in the model

1
ψk(p)=f(θk)+∇t f(θk)p+ pt ∇ 2f(θk)p (16)

2

and the objective function f(θk+p). If the agre-
ement is good, the model is reliable and is increa-
sed Δk. If not, Δk is decreased. In iteration k of a trust 
region method, the following subproblem is solved:

1
mín ψk(p)=f(θk)+∇t f(θk)p+

p 2

pt ∇2 f(θk)p  s/a: �p� ≤Δk (17)

which corresponds to a restricted problem. 
The optimality conditions show that pk will be the 
solution of the linear system:

( 2f(θk) + λI) pk = − f(θk)

with λ>0, ( 2f(θk)+λI) is defined as positive, 
and

λ(Δk − �pk�) = 0.

If 2f(θk) is defined as positive and Δk is suffi-
ciently large, the solution to the subproblem is
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2f(θk)p = − f(θk)

the solution from the Newton equations. The 
method depends on the reason; see Borlin (2007), 
Madsen  et al. (2004), Mizutani (1999);

f(θk)−f(θk+pk) current reduction
ρk= = (18)

ψk(0)−ψk (pk) planned reduction

If ρk is negative the step must be refused; fur-
thermore, if ρk is close to 1, agreement exists bet-
ween the model and the objective function, so it is 
safe to extend the trust region for another iteration. 
If ρk is positive but not close to 1, the region is not 
altered. Conversely, if ρk is close to 0 or negative the 
trust region is decreased. It is important to point out 
that the solution to the subproblem does not have to 
be exact; one can approximate by way of the Cauchy 
point, or the Dogleg or Steihaug methods, among 
others. See Borlin (2007), Coleman (1984), Madsen 
et al. (2004), Mizutani (1999).

2.3. Levenberg-Marquardt

The Levenberg-Marquardt method (L-M) has 
been a standard technique for nonlinear least squa-
res problems, commonly used in various disciplines 
for adjusting data. This iterative algorithm can be 
seen as a combination of the methods of maximum 
descent and the Gauss-Newton method. When the 
current solution is found to be far from the local mi-
nimum, the algorithm behaves like the maximum 
descent method: slow but with guaranteed conver-
gence. However, when the solution is close to the 
local minimum the method exhibits behavior simi-
lar to Gauss-Newton with a rapid convergence. L-M 
has emerged as a good alternative for avoiding the 
problems that the Gauss-Newton method presents 
when the Jacobian matrix is not singular. Leven-
berg (1944) and Marquardt (1963) suggested cal-
culating the direction pk=θ−θk, using the solution to 
the following problem. See Borlin (2007), Coleman 
(1984), De la Fuente O’Conor (1995), Madsen et al. 
(2004), Nocedal & Wright (1999);

2 2mín {�f(θk)+J(θk)pk�2 = μk�pk� 2 } (19) 
pk∈Rn

We must note that the parameter µk controls 
the size of the vector pk. Observe further that pk is 
defined as inclusive if J(θk) is not a complete ran-
ge. Under, µk→∞, �pk�→ 0 and pk it becomes para-
llel to the maximum slope. The L-M method can be 
described and analyzed under the framework of the 
trust region methods (in effect, this method is con-
sidered a precursor of the trust region methods for 
unrestricted optimization). See Mizutani (1999). hus 
defined, this subproblem can be proven equivalent 
to the following optimization problem: 

mín �f(θk)+J(θk)p�2 s.a. �p�2 ≤∆k (20) 
p∈Rn

where ∆k  > 0 is the radius of the trust region. 
In effect, the model function mk(p) will be:

1 1
mk(p)= �fk�2+pTJk

T fk+ pTJk
T Jkp2 2

It is known that when the Gauss-Newton so-
lution pGN falls within the limits of the trust region, 
which is to say �pGN�<∆, it can be considered a solu-
tion to the subproblem. Furthermore, a scale exists λ 
> 0 just like the solution p=pLM satisfies �p�=∆ and

(JT J + λI) p = −JT f                          (21)

which corresponds to the update of the step to 
be considered; See Berghen (2004).

3.     EVALUATION PROBLEMS

In this section, we validate the G-N, damped 
G-N, BFGS, DFP, and L-Malgorithms using problems 
of a high grade of difficulty known as Thurber, Box-
BOD, Rat42, Bennett5, Rat43 and Eckerle4, taken 
from the Statistical Reference Datasets Project 
(STRD), developed by the staff at the Statistical En-
gineering Division and the Mathematical and Com-
putational Sciences Division of the National Ins-
titute of Standards and Technology (NIST), which 
provides reference databases with certified values. 



86

Estimation of Parameters in Nonlinear Models: Algorithms and Applications

Rev.EIA.Esc.Ing.Antioq / Universidad EIA

For each of these problems the function to minimi-
ze, the parameters to estimate as denoted by, and 
the independent variables we will denote with are 
presented. The summary tables show the parame-
ters obtained by the different methods, such as the 
certified values (Cv), as well as the number of itera-
tions (it), the calculation time (CPU) and the sum of 
squared errors (SSE). The assessment was perfor-
med on a computer with the following characteris-
tics: Intel® Core™ i7 CPU X990 @ 3.47GHz, 24 Gb 
of RAM, and a 1 Terabyte hard drive with a 64-bit 
Windows 7 Professional operating system.

3.1.  Problems with a high grade of 
difficulty

3.1.1.  Thurber
β1+β2x + β3x2 + β4x3

y=
1+β5x + β6x2 + β7x3

This problem consists of seven parameters 
and 37 observations, and corresponds to a study 
that involves the mobility of a semiconductor elec-
tron. The response variable is the measurement of 
electron mobility, and the independent variable is 
the natural density logarithm.

3.1.2.  BoxBOD

y = β1 (1 −e−β2x)

This problem presents 2 parameters and 6 ob-
servations. The response variable is the biochemical 
demand for oxygen (BOD), and the independent va-
riable is the incubation time in days.

3.1.3. Rat42

β1y=
1 + eβ2 – β3x

TABLE 1. RESULTS OBTAINED FOR THE THURBER PROBLEM

θ G-N G-N Amort. BFGS Dogleg C.V

β1 1288.1397 1288.1397 1289.4424 1288.1397 1288.1397

β2 1491.0793 1491.0793 1488.2110 1491.0793 1491.0793

β3 583.2384 583.2384 580.6049 583.2384 583.2384

β4 75.4166 75.4166 74.9928 75.4166 75.4166

β5 0.9663 0.9663 0.96214 0.9663 0.9663

β6 0.39797 0.39797 0.39859 0.39797 0.39797

β7 0.04973 0.04973 0.05148 0.04973 0.04973

it 53 100 100 100

CPU 00:00.5 00:00.8 00:01.1 00:00.9

SSE 5642.7082 5642.7082 5800.2368 5642.7082 5642.7082

TABLE 2.  RESULTS OBTAINED FOR THE BOXBOD PROBLEM

θ G-N G-NAmort. BFGS DFP Dogleg C.V

β1 213.8094 213.8094 213.8094 213.8094 213.8094 213.8094

β2 0.54724 0.54724 0.54724 0.54724 0.54724 0.54724

it 14 13 28 28 13

CPU 00:00.4 00:00.2 00:00.4 00:00.5 00:00.3

SSE 1168.0089 1168.0089 1168.0089 1168.0089 1168.0089 1168.0089
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This problem consists of three parameters and 
nine observations and corresponds to data from an 
example of how to adjust sigmoidal growth curves 
taken from Ratkowsky (1983). The response varia-
ble is grass growth, and the independent variable 
corresponds to time.

3.1.4.  Bennett5
1

– —y = β1 �β2 + x� β3

This problem consists of 3 parameters and 
154 observations and corresponds to the magneti-
zation modeling of superconductivity. The response 
variable is the force of the magnetic field, and the 
independent variable is the time in minutes.

3.1.5.  Eckerle4
β1

(x−β3)2

y= e –
 β2

2β2
2

This problem presents 3 parameters and 35 
observations and corresponds to the study of the 
transmittance of circular interference. The response 
variable is the transmittance, and the independent 
variable is the wavelength.

TABLE 3. RESULTS OBTAINED FOR THE RAT42 PROBLEM

θ G-N G-NAmort. BFGS DFP Dogleg L-M C.V

β1 72.4622 72.4622 72.4622 72.4622 72.4622 72.4622 72.4622

β2 2.6181 2.6181 2.6181 2.6181 2.6181 2.6181 2.6181

β3 0.06736 0.06736 0.06736 0.06736 0.06736 0.06736 0.06736

it 7 6 23 27 6 13

CPU 00:00.3 00:00.4 00:00.4 00:00.6 00:00.3 00:00.5

SCE 8.05652 8.05652 8.05652 8.05652 8.05652 8.05652 8.05652

TABLE 4. RESULTS OBTAINED FOR THE BENNETT5 PROBLEM

θ G-N G-NAmort. BFGS DFP L-M C.V

β1 -2523.5058 -2523.5058 -1501.7441 -1502.2288 -1500.0298 -2523.5058

β2 46.7365 46.7365 41.1951 41.1997 41.1828 46.7366

β3 0.93218 0.93218 1.0321 1.03204 1.0324 0.93218

it 6 66 26 100 15

CPU 00:00.5 00:00.8 00:00.9 00:00.7 00:00.6

SCE 0.000524 0.000524 0.000608 0.000608 0.000609 0.000524

3.1.6.  Rat43

β1

y = 1
�1 + e (β2 – β3x)� β4

This problem consists of 4 parameters and 15 
observations and corresponds to a study on how to 
adjust sigmoidal growth curves (Ratkowsky, 1983). 
The response variable is the dry weight of onion 
bulbs and cymes, and the independent variable co-
rresponds to time.

The algorithms implemented present good be-
havior in general, succeeding in obtaining in most 
cases the certified values given by the STRD. The 
BFGS, DFP and L-M methods did not reach the cer-
tified values for the Bennett5 model for three pa-
rameters and 154 observations, but only for para-
meter β1. In one case, it was due to the fact that the 
maximum number of iterations (DFP) was reached 
and in the other cases (BFGS and L-M) it was in the 
presence of numerical instabilities.
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TABLE 5. RESULTS OBTAINED FOR THE ECKERLE4 PROBLEM

θ G-N G-NAmort. BFGS DFP Dogleg L-M C.V

β1 1.5544 1.5548 1.5545 1.5542 1.5540 1.5545 1.5544

β2 4.0889 4.0915 4.0907 4.0882 4.0873 4.0912 4.0888

β3 451.5411 451.5413 451.5427 451.5387 451.5412 451.5411 451.5412

it 4 3 16 33 7 3

CPU 00:00.3 00:00.4 00:00.6 00:00.5 00:00.3 00:00.4

SCE 0.001464 0.001464 0.001464 0.001464 0.001464 0.001464 0.001464

TABLE 6. RESULTS OBTAINED FOR THE RAT43 PROBLEM

θ G-N G-NAmort. BFGS DFP Dogleg L-M C.V

β1 699.6415 699.6415 699.6415 699.6415 699.6415 699.6415 699.6415

β2 5.2771 5.2771 5.2771 5.2771 5.2771 5.2771 5.2771

β3 0.7596 0.7596 0.7596 0.7596 0.7596 0.7596 0.7596

β4 1.2792 1.2792 1.2792 1.2792 1.2792 1.2792 1.2792

it 14 100 26 29 39 100

CPU 00:00.5 00:00.6 00:01.1 00.01.7 00:00.9 00:00.7

SCE 8786.4049 8786.4049 8786.4049 8786.4049 8786.4049 8786.4049 8786.4049

Figure 1. Adjustments made to Thurber, BoxBOD, Rat42 and Bennett5 models

Thurber Function BoxBOD Function

Rat42 Function Bennett5 Function
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4.    APPLICATION IN THE FISHING 
SECTOR

4.1. Introduction

In Chile fishing is one of the most important 
industrial sectors in terms of quantities extracted 
from a natural resource. This is thanks to the great 
abundance of marine resources Chile has, and it is 
for that reason that the growth and mortality studies 
of the different species that make up this important 
resource are of great interest to those responsible 
for the sector’s exploitation and conservation. Said 
studies are principally geared towards supporting 
the knowledge necessary for maintaining balance 
in exploited stocks in such a way that they become 
sustainable over time. The results obtained for the 
growth of sardines, anchovies and hake will be stu-
died and explained. This phenomenon is one of the 

most important and well-known cases worldwide 
as an example of nonlinear behavior. The growth of 
a living being can be divided into two or three very 
pronounced stages in which it is possible to obser-
ve very different growth speeds or rates. In general, 
living beings experience a first period of growth at 
very high rates, where a large size is registered in 
a relatively short time. Later, a second state begins 
where said rate notably decreases until a certain 
level of possessing almost a null rate and the size 
tends to stagnate, see Blasco (N.D.). In this study, it 
is possible to find concepts related to growth that 
can be of great interest, such as growth speed, a 
concept that can help to obtain information regar-
ding the optimum time of interest to take a parti-
cular action on a determined living being with the 
aim of being able to obtain some benefit from it 
(reproduction time, catch age, sexual maturity, etc.). 

Figure 2. Adjustments made toEckerle4 and Rat43 models

Eckerle4 Function Rat43 Function
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In addition, concepts can appear such as growth 
acceleration, which indicates the absolute variation 
rate with time, or relative growth rate, which can be 
useful for comparing trends. However, the present 
research focuses on the fishing sector with an inter-
est in obtaining the growth parameters of a model 
with significant applicability in said sector, such as 
the Von Bertalanffy equation.

4.2.  Von Bertalanffy model

In the fishing sector a widely-used growth 
model is the Von Bertalanffy equation, which repre-
sents growth in length and weight, both based on 
the lifespan of the fish. This is an individual growth 
model and applies to a large majority of fish. The 
Von Bertalanffy model offers the allure of trying to 
deduce the equation based on the anabolism and ca-
tabolism rates of the animal, which ideally would be 
obtained through laboratory experiments (Blasco, 
1999). It can be inferred that length is modelled by 
the equation 

L̂(t)=L∞(1−e−k(t−t0))+ϵt               (22)

while growth in weight is estimated through

Ŵ(t)=W∞(1−e−k(t−t0))b +ϵt             (23)

where t is the age of the species, L̂(t) and Ŵ(t) 
are the average length and weight of the species L∞ 

y W∞ over time t, represent the average asymptotic 
length and weight for the respective species, k is the 
parameter of the curvature, t0 is the theoretical age at 
length zero for a particular species (constant, which 
represents the age that the fish must supposedly 
have so its length is equal to zero), b represents the 
slope of the length-weight relationship, and ϵt repre-
sents the error. One of the principal applications of 
the knowledge of the age is, together with the length 
and weight of the fish, estimation of the growth cur-
ve. In addition, it permits the construction of age-
size keys which allow the structures by age of catch 
and stock to be known. Other important parameters 
that can be estimated are: age of first maturity and 

spawning; age of recruitment; age of first catch, 
etc. This makes it possible to estimate abundance, 
biomass and mortality per fish, fundamental for as-
signing catch quotas and maintaining the resource. 
Figure 3 shows the behavior of the Von Bertalanffy 
growth model for different values of the parameter 
k. The importance of this parameter can clearly be 
seen in a growth model, where a value of k=0 would 
indicate the maximum length reached for a fish for 
which the growth factor would be null. When it is 
not possible to depend on length-age information 
for individual juveniles, which generates a slant in 
the distribution of the sizes, the backcalculation te-
chnique is used for length to preterit ages. For this, 
it is necessary to establish a relationship or propor-
tionality between the growth increase of the otolith 
and the fish, represented by a linear or potential 
regression. With the resulting expression, it is fea-
sible to calculate the lengths that the fish had when 
a growth ring was formed. The otoliths constitute a 
very important part of the internal ear of bone fish. 
Once the ages are obtained, the procedure used to 
determine the parameters of the Von Bertalanffy 
model is with a linearized Beberton and Holt (1957) 
expression de Beberton y Holt (1957). This method 
has become one of the cornerstones of fishery bio-
logy, given its use as a submodel in more complex 
models for describing the dynamics of fish popula-
tions. The model for weight was only obtained for 
the sardine because the respective information was 
not available in all cases.

4.3. Growth of the anchovy (En-
graulis ringens)

The anchovy is a pelagic fish with a wide geo-
graphic distribution in the southeast Pacific. It is 
distributed from the north of Peru to the X region 
of Los Lagos, Chile. This species exhibits a short life 
cycle with three to four years of longevity, reaching a 
first sexual maturity size of 11.5 cm. Furthermore, it 
has rapid growth and an elevated natural mortality 
rate, and it forms dense shoals and as a species is 
greatly affected by environmental factors in all ages 
of its life cycle. The anchovy in Chile constitutes a 
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fishery resource that sustains important fishing in-
dustries, its destination being primarily fish meal 
and fish oil production.

4.3.1. Results

In the study conducted on the anchovy the Von 
Bertalanffy model was applied and the estimation 
performed based on an observed set of 1,268 speci-
mens, both male and female because the growth of 
both sexes is similar. As can be observed in Figure 
4, it shows an almost constant growth curve until 
approximately 4.5 years, the age at which it reaches 
its maximum growth size. After this age the anchovy 
tends to decrease in growth, reaching approxima-
tely 16 cm. The data were obtained from the work 
of Cisterna (2006) and her study estimated the fo-
llowing parameters for the Von Bertalanffy model:

L̂(t)=18.47334(1−e−0.31685(t+0.71061))

With these parameters, a remainder of R = 
840.7997954 was obtained. Upon applying the 

algorithms shown in Table 7, the parameters for 

the model were estimated. Thus, the following 

model is obtained

L̂(t)=18.42796(1−e−0.31636(t+0.70458))

considering the following as initial values: 

L∞ = 19,  k = 0.5 año−1  t0 = −0.5. The remain-

der obtained through these parameters was R = 

842.6249804, which is smaller than that obtained 

by Cisterna. Table 7 summarizes the behavior of the 

programmed methods as well as the execution times.

4.4. Growth of the common sardine 
(Strangomera bentinki)

This resource is the second in importance in 

fishing activity in the central-south region of Chi-

le. For more information on this species. See Peña 

(2008).

Figure 3. Behavior of Von Bertalanffy for different values of k
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4.4.1. Results

For the common sardine the Von Bertalanffy 
model was applied and the estimation was perfor-
med for a total of 792 observed samples between 
female and male because no major difference is dis-
tinguishable in the growth of the two sexes. Figure 
5, as in the case of the anchovy, shows a tendency 
towards near constant growth, in this case until ap-
proximately 3 years. Later, the fish does not exhibit 
an important growth, reaching 17 cm. The data were 
obtained from the study conducted by Peña, (2008). 
Her research estimated the following parameters 
for the Von Bertalanffy model:

L̂(t) = 15. 78(1 − e−0.686(t+0.1816))

With these parameters, a remainder of R = 

1.536. 21968 was obtained. The algorithms presen-

ted in this study obtained equal results for all para-

meters. Thus, the estimated model remains:

L̂(t)  =  15. 7844(1 − e−0.68649(t+0.18162))

The remainder obtained with these parame-

ters was R = 1,536, 18379. The following initial va-

lues were used: L∞ = 18,  k = 0.45 year−1, t0 = −0.82. 

Below, in Table 8, the behavior of the programmed 

methods is summarized:

TABLE 7. RESULTS OBTAINED BY THE ALGORITHM FOR ANCHOVY GROWTH

θ G-N G-NAmort. BFGS DFP Dogleg L-M

L∞ 18.42796 18.42796 18.42796 18.42796 18.42796 18.42796

k 0.31636 0.31636 0.31636 0.31636 0.31636 0.31636

t0 -0.70458 -0.70458 -0.70458 -0.70458 -0.70458 -0.70458

it 4 4 37 87 4 9

CPU 00:02.2 00:01.4 0:06.3 00:14.3 00:01.5 00:02.1

Figure 4. Adjustment to anchovy growth
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4.5. Growth of the common hake 
(Merluccius gayi gayi)

This resource is one of the most important for 
fishing activity in the central south region of Chile. For 
further information about this species: INPESCA, 2007.

4.5.1. Results

4.5.2. Common hake (male)

For the male samples of the common hake 
2.019 units were observed and can be found in the 
next figure below, which shows the length-age rela-
tionship. The data were obtained from INPESCA and 

the model proposed by Neira (2006) estimated the 
following parameters for the Von Bertalanffy model:

Lt = 49. 85[1 − e−0.44284(t+0.06869)]

With these parameters, a remainder of R = 
47.808. 50972 was obtained. Furthermore, all the 
algorithms programmed in this research project 
gave the same values for all parameters. We obtain, 
thus, the following model:

Lt = 52. 44[1 − e−0.36356(t−0.21240)]

with a remainder of R = 16.178. 744. The re-
mainder decreases threefold, which involves an 
improved adjustment to the experimental data. 
Figure 6 shows the data and just one adjustment. 

Figure 5. Adjustment to common sardine growth

Common Sardine Growth
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Baseline Thesis Adjustment
Linear Search Adjustment
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TABLE 8. RESULTS OBTAINED BY THE ALGORITHM FOR COMMON SARDINE GROWTH

θ G-N G-NAmort. BFGS DFP L-M

L∞ 15.78437 15.78437 15.78437 15.44615 15.19560

k 0.68649 0.68649 0.68649 0.72485 0.72082

t0 -0.18162 -0.18162 -0.18162 -0.16229 -0.10822

it 4 22 50 100 100

CPU 00:02.3 00:02.1 00:05.3 00:08.3 00:03.6
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Once the estimation is performed by the least squares 
method, we note that, of the 6 methods programmed, 
all garner the same results. Only the BFGS and DFP 
methods do not converge with each other; however, 
the moment the process stops they converge at the 
same parameters as those that did. The results obtai-
ned by the algorithm used the following initial values: 
L∞ = 52, k = 0.36 year−1, t0 = −0.25. Table 9 displays 
the behavior of the programmed methods.

4.5.3. Common hake (female)

For the female samples of the common hake 
3.517 units were observed. They can be found in the 
next figure below which provides the length-age re-
lationship. As for the males, the data were obtained 
from INPESCA, and the Von Bertalanffy model esti-
mated by Neira (2006) is the following:

Lt = 58. 21[1 − e−0.28758(t+0.17412)]

obtaining a remainder of R = 46.709. 7978. All 
the algorithms presented in this study obtained the 
same values for the parameters of the Von Berta-
lanffy model; thus, we obtain the following model:

Lt = 58. 96[1 − e−0.29188(t−0.10074)]

with a remainder of R = 37.860. 5497, utili-
zing the initial values given by L∞ = 69, k = 0.19, 
t0 = −0.65. The algorithm generates a decrease in 
the remainder by 1.2 times, involving an impro-
ved adjustment to the experimental data. Figure 7 
shows the data and the adjustment with the algo-
rithm. As can be observed, neither of the two cur-
ves correctly represent the behavior of the data. 

TABLE 9. RESULTS OBTAINED BY THE ALGORITHM FOR COMMON HAKE GROWTH (MALE)

θ G-N G-NAmort. BFGS DFP Dogleg L-M

L∞ 52.43626 52.43626 52.43626 52.43626 52.43626 52.43626

k 0.36356 0.36356 0.36356 0.36356 0.36356 0.36356

t0 0.21240 0.21240 0.21240 0.21240 0.21240 0.21240

it 6 100 26 31 30 11

CPU 00:02.3 00:16.2 00:09.1 00:10.5 00:05.4 00:02.7

Figure 6. Adjustment to common hake growth (male)
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This may be due to the model employed (Von 
Bertalanffy) not correctly representing the growth 
of the common hake females for the data in the stu-
dy. In Table 10, the behavior of the programmed 
methods is shown.

4.6. Cerrato test

Commonly the parameter equality of different 
sexes can be analyzed by conducting statistical tests 
that demonstrate that very characteristic. This cur-
ve comparison can be performed through a multiva-
riate growth comparison analysis by Cerrato (1990) 
based on the T2 Hotelling test. The Cerrato test is a 
procedure used for growth comparison between the 
sexes for a determined species. On this occasion the 
test was applied to the growth of the common hake 
since the growth for the sardine and anchovy did 

not present notable differences between the sexes. 
What occurs with the hake is the female presents 
a higher development in length than the male. The 
Cerrato test procedure (1990) can be summarized 
in the following way: the parameters in comparison 
are grouped into column vectors defined by

θ1 = [L1
∞ k1 t1

0]t     θ2 = [L1
∞ k2 t2

0]t

Then the difference between vectors is defined 
as: δ = θ1 − θ2. Now it is possible to establish the 
null and alternative hypotheses respectively:

H0 : δ = 0

H1 : δ ≠ 0

Based on the estimated values, we define: d = 
θ̂1 − θ̂2. Then, the statistical test is given by the fo-
llowing expression:

TABLE 10. RESULTS OBTAINED BY THE ALGORITHM FOR COMMON HAKE GROWTH (FEMALE)

θ G-N G-N Amort. BFGS DFP Dogleg L-M

L∞ 58.96163 58.96163 58.96163 58.96163 58.96163 58.96163

k 0.29188 0.29188 0.29188 0.29188 0.29188 0.29188

t0 0.10074 0.10074 0.10074 0.10074 0.10074 0.10074

it 9 100 39 38 100 16

CPU 00:03.2 00:29.1 00:24.4 00:19.2 00:25.1 00:05.2

Figure 7. Adjustment to common hake growth (female)

Common Hake Growth (female)

Le
ng

th
 (c

m
)

Age (years)

Observed Data
Linear Search Adjustment
Neira Adjustment



96

Estimation of Parameters in Nonlinear Models: Algorithms and Applications

Rev.EIA.Esc.Ing.Antioq / Universidad EIA

T 2 = dt U−1d

where U = U1 + U2, and Ui represent the cova-
riance matrix. The expression for matrix U is given by:

U = S2[F t (θ)F (θ)]−1

where
1

S2 = S(θ̂)
n – 3

and
n

S(θ̂)= � (yi − f(θ, ti))2

 i = 1
represent the sum of the squared error. F(θ) 

represents the partial derivative matrix with res-
pect to θj. Moving on with the procedure, is done fi = 
ni−3, for which f * is determined by

1 1
�

d′U−1U1U−1d
�

2

+
1

�
d′U−1U2U−1d

�
2

— = — —
f * f 1

 d′U−1d f 2
 d′U−1d

The value of f * should be among the smallest 
of the values of f1 and f2 and their sum. The null hy-
pothesis is rejected if

T2>T2
α (3, f *)

where  T2
α (p,m) is defined as

mp
T2

α (p,m) = Fα
p,m – p+1m – p + 1

with being Fα
p,m – p+1 the percentage point above 

the distribution F with p and m − p +1 degrees of 
freedom. This test can also be used in a bivariable 
comparison (for example L∞ and k) or even univa-
riable. The results obtained from the test for the 
common hake are shown in Table 11.

TABLE 11. RESULTS FOR APPLICATION OF THE 
CERRATO TEST TO THE COMMON HAKE

Species T2 T2
α (3, f *)

Common 
hake 269.83096982076 14.0380671612343

As can be observed in Table 11, it becomes evi-
dent that the growth parameters are not the same for 
both sexes of the common hake, thus it is confirmed 
that there is a difference in growth between females 
and males.

5.    CONCLUSIONS
The Von Bertalanffy model was applied for 

the growth of the common hake, anchovy, and com-
mon sardine, estimating the parameters of said 
growth model by way of the application of the dis-
tinct parameter estimation algorithms in nonlinear 
models. The results obtained by the optimization 
algorithms have been disclosed in their respective 
sub-applications, meaning for the anchovy, sardine, 
and common hake. According to them, for the study 
conducted for the anchovy all the methods succee-
ded in converging to the values expected according 
to Cisterna (2008). In the case of the study for the 
common sardine, the results were different because 
DFP, like Levenberg-Marquardt, did not completely 
converge at the values obtained in (2008), although 
this was due principally to the computational force 
that these methods demonstrated in the process of 
determining the size of the step. The Dogleg method 
doesn’t succeed in converging because the algo-
rithm detects singularity in the evaluation of the 
approximation matrix of the Hessian matrix. In the 
case of the studies conducted for the common hake 
the results obtained by the algorithms implemented 
were significantly different from those presented 
by Neira (2006). The programmed methods give 
identical results, but they are different both in the 
value of the parameters and the remainders. Upon 
analyzing the parameters obtained for the different 
species of fish, we can conclude that for the para-
meter L∞, it is correct to describe it, in practice, as 
the average maximum length that could be reached 
for the different species studied, see [25]. This is to 
say that for fish like the anchovy and the sardine the 
values would be  L = 18.42796 and L = 15.78437, res-
pectively. In terms of the parameter k, this indicates 
the degree of inclination of the growth curve so that 
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for very high values it indicates that the fish has a 
short lifespan, which is why its growth rate is so ele-
vated. This occurs in the case of the sardine, whose 
short lifespan makes a value of k =  0.68649 neces-
sary for this parameter. On the other hand, hake 
(Ojeda & Olivares, 1997) has a longer lifespan, so the 
value of the parameter k is much lower. Regarding 
the parameter t0 , it corresponds to a fictitious value 
associated with a period of the fish in which there 
is no information (Schnute, 1981). This means it co-
rresponds to the time from when it is born to when 
it is 1 year old. In this period the fish experiences an 
exponential growth that stops upon reaching 1 year 
old (turning point) and begins an exponential de-
crease. In other words, this parameter corresponds 
to the age of the fish when it has a length of zero. In 
general, we can conclude that the algorithms imple-
mented behave well when it comes to the CPU time 
used to obtain the parameters, the number of itera-
tions and the estimated values of the parameters for 
highly difficult problems. Regarding application in 
the fishing sector, the algorithms implemented ob-
tain better results than those reported in the litera-
ture (sum of minor squared errors), making them a 
good option for problem solving in other areas.
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