Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado

Diana Shirley Galeano Osorio

Resumen


Los materiales metálicos se emplean con frecuencia en la fabricación de implantes biomédicos, siendo la corrosión un factor que determina el éxito del desempeño del implante en el organismo. Debido a esto, la presente investigación estudió el comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado. A través de difracción de rayos X fue posible deducir que las capas nitruradas estaban compuestas, además de la fase austenítica, de la fase S. De acuerdo a los resultados alcanzados mediante análisis electroquímicos, la capa pasiva de los aceros 316L nitrurado y F1586 fueron las más protectoras en comparación al acero 316L sin nitrurar. Esto se debió a la alta estabilidad de la capa pasiva del acero nitrurado y a la posible formación de productos estables de corrosión en la superficie del acero F1586. En términos generales, el acero sometido a nitruración reveló la menor corrosión en el fluido corporal simulado.

Palabras clave


Aceros auteníticos, Capa pasiva, Corrosión, Fuido corporal simulado, Nitruración plasma.

Texto completo:

PDF

Referencias


V. Montaño-Machado, M. Sikora-Jasinska, C.C. Bortolan, P. Chevallier, D. Mantovani, Medical Devices: Coronary Stents, in: R. Narayan (Ed.), Encycl. Biomed. Eng., Elsevier, Oxford, 2019: pp. 386–398. https://doi.org/10.1016/B978-0-12-801238-3.10995-X.

D. Guo, C.T. Kwok, S.L.I. Chan, Spindle speed in friction surfacing of 316L stainless steel – How it affects the microstructure, hardness and pitting corrosion resistance, Surf. Coat. Technol. 361 (2019) 324–341. https://doi.org/10.1016/j.surfcoat.2019.01.055.

M. Laleh, A.E. Hughes, W. Xu, P. Cizek, M.Y. Tan, Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing, Corros. Sci. (2019) 108412. https://doi.org/10.1016/j.corsci.2019.108412.

C. Man, C. Dong, T. Liu, D. Kong, D. Wang, X. Li, The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid, Appl. Surf. Sci. 467–468 (2019) 193–205. https://doi.org/10.1016/j.apsusc.2018.10.150.

R. Ziegenhagen, L. Reclaru, L.C. Ardelean, A.F. Grecu, Corrosion Resistance of Stainless Steels Intended to Come into Direct or Prolonged Contact with the Skin, Materials. 12 (2019) 987. https://doi.org/10.3390/ma12060987.

N. Eliaz, Corrosion of Metallic Biomaterials: A Review, Materials. 12 (2019). https://doi.org/10.3390/ma12030407.

M. Sivakumar, S. Rajeswari, Corrosion induced failure of a stainless steel orthopaedic implant device, Steel Res. 66 (1995) 35–38. https://doi.org/10.1002/srin.199501768.

K. Yang, Y. Ren, Nickel-free austenitic stainless steels for medical applications, Sci. Technol. Adv. Mater. 11 (2010). https://doi.org/10.1088/1468-6996/11/1/014105.

D. López, N. Alonso Falleiros, A. Paulo Tschiptschin, Effect of nitrogen on the corrosion–erosion synergism in an austenitic stainless steel, Tribol. Int. 44 (2011) 610–616. https://doi.org/10.1016/j.triboint.2010.12.013.

U. Kamachi Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, B. Raj, On the pitting corrosion resistance of nitrogen alloyed cold worked austenitic stainless steels, Corros. Sci. 44 (2002) 2183–2198. https://doi.org/10.1016/S0010-938X(02)00035-5.

J. Li, Q. Wang, Y. Yang, Z. Wu, L. Tan, Y. Ren, K. Yang, Enhancing Pitting Corrosion Resistance of Severely Cold-Worked High Nitrogen Austenitic Stainless Steel by Nitric Acid Passivation, J. Electrochem. Soc. 166 (2019) C365–C374. https://doi.org/10.1149/2.0211913jes.

Q. Wang, B. Zhang, Y. Ren, K. Yang, A self-healing stainless steel: Role of nitrogen in eliminating detrimental effect of cold working on pitting corrosion resistance, Corros. Sci. 145 (2018) 55–66. https://doi.org/10.1016/j.corsci.2018.09.013.

F04 Committee, Specification for Wrought Nitrogen Strengthened 11Manganese-17Chromium-3Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29225), ASTM International, n.d. https://doi.org/10.1520/F2581-12R17.

F04 Committee, Specification for Wrought Nitrogen Strengthened 22 Chromium-13 Nickel-5 Manganese-2.5 Molybdenum Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S20910), ASTM International, n.d. https://doi.org/10.1520/F1314_F1314M-13A.

F04 Committee, Specification for Wrought, Nitrogen Strengthened 23Manganese-21Chromium-1Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29108), ASTM International, n.d. https://doi.org/10.1520/F2229-07.

F04 Committee, Specification for Wrought Nitrogen Strengthened 21Chromium--10Nickel--3Manganese--2.5Molybdenum Stainless Steel Alloy Bar for Surgical Implants (UNS S31675), ASTM International, n.d. https://doi.org/10.1520/F1586_F1586M-13.

E. J. Mittemeijer, Fundamentals of Nitriding and Nitrocarburizing, in: J. Dossett, G.E. Totten (Eds.), Steel Heat Treat. Fundam. Process., ASM International, 2013: pp. 619–646.

E. Menthe, K.-T. Rie, Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding, Surf. Coat. Technol. 116–119 (1999) 199–204. https://doi.org/10.1016/S0257-8972(99)00085-7.

F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature, Surf. Coat. Technol. 200 (2005) 2474–2480. https://doi.org/10.1016/j.surfcoat.2004.07.110.

J. Biehler, H. Hoche, M. Oechsner, Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite, Surf. Coat. Technol. 324 (2017) 121–128. https://doi.org/10.1016/j.surfcoat.2017.05.059.

E. De Las Heras, G. Ybarra, D. Lamas, A. Cabo, E.L. Dalibon, S.P. Brühl, Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres - Influence on microstructure and corrosion resistance, Surf. Coat. Technol. 313 (2017) 47–54. https://doi.org/10.1016/j.surfcoat.2017.01.037.

J.K.F.S. Braz, G.M. Martins, V. Sabino, J.O. Vitoriano, C.A.G. Barboza, A.K.M.C. Soares, H.A.O. Rocha, M.F. Oliveira, C. Alves Júnior, C.E.B. Moura, Plasma nitriding under low temperature improves the endothelial cell biocompatibility of 316L stainless steel, Biotechnol. Lett. 41 (2019) 503–510. https://doi.org/10.1007/s10529-019-02657-7.

D.S. Galeano-Osorio, S. Vargas, J.M. Vélez, A. Mello, M.N. Tanaka, C.E. Castano, Hemocompatibility of plasma nitrided 316L stainless steel: Effect of processing temperature, Appl. Surf. Sci. (2019) 144704. https://doi.org/10.1016/j.apsusc.2019.144704.

T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials. 27 (2006) 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017.




DOI: https://doi.org/10.24050/19099762.n26.2019.1400

Métricas de artículo

Vistas de resumen
54




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.


UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |