Interfaz cerebro-computador multimodal para procesos de neurorrehabilitación de miembros superiores en pacientes con lesiones de médula espinal: una revisión

Carlos Diego Ferrin Bolaños, Humberto Loaiza Correa

Resumen


El número de trabajos relacionados con Interfaces Cerebro-Computador (BCI, Brain-Computer Interface en inglés) directamente aplicados al proceso de rehabilitación de pacientes con lesiones de médula espinal está en aumento debido a la mejora en las técnicas de procesamiento digital de señales y reconocimiento de patrones que permiten relacionar las señales electroencefalográficas con acciones motoras. Los resultados preliminares de las pruebas de las BCI sobre sujetos reales permiten visualizar en un futuro relativamente cercano la inclusión de este tipo de herramientas en los protocolos de rehabilitación. Sin embargo, hay muchas barreras por resolver, principalmente las relacionadas con el aumento del desempeño y la generación de múltiples comandos naturales mediante interfaces cerebro-computador a partir de electroencefalografía superficial (EEG). En este trabajo se hace una revisión de los más importantes trabajos que muestran la evolución, el estado actual  y las oportunidades de investigación alrededor de la temática de interfaces cerebro-computador en procesos de neurorrehabilitación de miembros superiores en pacientes con lesiones medulares.


Texto completo:

PDF

Referencias


C. P. Henao-lema and J. E. Pérez-Parra, “Lesiones medulares y discapacidad : revisión bibliográfica,” Aquichan, vol. 10, pp. 157–172, 2010.

S. Thuret, L. D. F. Moon, and F. H. Gage, “Therapeutic interventions after spinal cord injury,” Nat. Rev. Neurosci., vol. 7, no. 8, pp. 628–643, Aug. 2006.

A. R. C. Donati et al., “Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients,” Sci. Rep., vol. 6, no. 6, p. 30383, Aug. 2016.

O. Tsuji et al., “Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury,” Proc. Natl. Acad. Sci., vol. 107, no. 28, pp. 12704–12709, Jul. 2010.

E. A. J. Joosten, “Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle,” Cell Tissue Res., vol. 349, no. 1, pp. 375–395, Jul. 2012.

V. Sahni and J. A. Kessler, “Stem cell therapies for spinal cord injury,” Nat. Rev. Neurol., vol. 6, no. 7, pp. 363–372, Jul. 2010.

S. Harkema et al., “Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study,” Lancet, vol. 377, no. 9781, pp. 1938–1947, Jun. 2011.

M. Grangeon, P. Revol, A. Guillot, G. Rode, and C. Collet, “Could motor imagery be effective in upper limb rehabilitation of individuals with spinal cord injury? A case study,” Spinal Cord, vol. 50, no. 10, pp. 766–771, 2012.

E. Kandle, J. Schwartz, T. Jessel, S. Siegelbaum, and A. Hudspedth, Principles of Neural Science, 5th ed. McGraw Hill Medical, 2013.

S. C. Kirshblum et al., “Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury,” J. Spinal Cord Med., vol. 34, no. 6, pp. 547–554, Nov. 2011.

M. Rohm, G. R. Müller-Putz, A. Kreilinger, A. von Ascheberg, and R. Rupp, “A hybrid Brain-Computer Interface for control of a reaching and grasping neuroprosthesis,” Biomed Tech, pp. 1–4, 2010.

S. R. Soekadar, M. Witkowski, N. Vitiello, and N. Birbaumer, “An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand,” Biomed. Eng. / Biomed. Tech., vol. 60, no. 3, pp. 199–205, Jan. 2015.

J. Arata, K. Ohmoto, R. Gassert, O. Lambercy, H. Fujimoto, and I. Wada, “A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 3902–3907.

P. Heo, G. M. Gu, S. jin Lee, K. Rhee, and J. Kim, “Current hand exoskeleton technologies for rehabilitation and assistive engineering,” Int. J. Precis. Eng. Manuf., vol. 13, no. 5, pp. 807–824, 2012.

J. D. R. Millán et al., “Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges,” Front. Neurosci., vol. 1, no. SEP, pp. 1–15, 2010.

S. J. Connolly, A. Mclntyre, S. Mehta, B. L. Foulon, and R. W. Teasell, “Upper Limb Rehabilitation Following Spinal Cord Injury,” 2009.

C. P. Murphy and R. G. Chuinard, “Management of the upper extremity in traumatic tetraplegia.,” Hand Clin., vol. 4, no. 2, pp. 201–9, May 1988.

A. Bryden, A. Sinnott, and M. J. Mulcahey, “Innovative Strategies for Improving Upper Extremity Function in Tetraplegia and Considerations in Measuring Functional Outcomes,” Top. Spinal Cord Inj. Rehabil., vol. 10, no. 4, pp. 75–93, Apr. 2005.

L. Harvey, “Principles of conservative management for a non-orthotic tenodesis grip in tetraplegics.,” J. Hand Ther., vol. 9, no. 3, pp. 238–42, 1996.

P. H. Peckham et al., “Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: A multicenter study,” Arch. Phys. Med. Rehabil., vol. 82, no. 10, pp. 1380–1388, Oct. 2001.

Consortium for Spinal Cord Medicine and P. Veterans, Preservation of upper limb function following spinal cord injury: a clinical practice guideline for health-care professionals., vol. 28, no. 5. The Journal of Spinal Cord Medicine, 2005.

G. J. Snoek, M. J. IJzerman, M. W. Post, A. M. Stiggelbout, M. J. Roach, and G. Zilvold, “Choice-Based Evaluation for the Improvement of Upper-Extremity Function Compared With Other Impairments in Tetraplegia,” Arch. Phys. Med. Rehabil., vol. 86, no. 8, pp. 1623–1630, Aug. 2005.

J. M. M. Hummel, G. J. Snoek, J. A. van Til, W. van Rossum, and M. J. Ijzerman, “A multicriteria decision analysis of augmentative treatment of upper limbs in persons with tetraplegia.,” J. Rehabil. Res. Dev., vol. 42, no. 5, pp. 635–44, 2005.

J. Van Tuijl, Y. Janssen-Potten, and H. Seelen, “Evaluation of upper extremity motor function tests in tetraplegics,” Spinal Cord, vol. 40, pp. 51–64, 2002.

M. J. Mulcahey, D. Hutchinson, and S. Kozin, “Assessment of upper limb in tetraplegia: considerations in evaluation and outcomes research.,” J. Rehabil. Res. Dev., vol. 44, no. 1, pp. 91–102, 2007.

A. M. Bryden, H. A. Hoyen, M. W. Keith, M. Mejia, K. L. Kilgore, and G. A. Nemunaitis, “Upper extremity assessment in tetraplegia: The importance of differentiating between upper and lower motor neuron paralysis,” Arch. Phys. Med. Rehabil., vol. 97, no. 6, pp. S97–S104, 2016.

J. H. Kaas, “Neural Plasticity,” in International Encyclopedia of the Social & Behavioral Sciences, Elsevier, 2001, pp. 10542–10546.

J. S. Seo, J. Haitsma, T. Kalker, and C. D. Yoo, “A robust image fingerprinting system using the Radon transform,” Signal Process. Image Commun., vol. 19, no. 4, pp. 325–339, Apr. 2004.

K. S. Beekhuizen and E. C. Field-Fote, “Massed Practice versus Massed Practice with Stimulation: Effects on Upper Extremity Function and Cortical Plasticity in Individuals with Incomplete Cervical Spinal Cord Injury,” Neurorehabil. Neural Repair, vol. 19, no. 1, pp. 33–45, Mar. 2005.

A. Curt, H. J. A. Van Hedel, D. Klaus, and V. Dietz, “Recovery from a Spinal Cord Injury: Significance of Compensation, Neural Plasticity, and Repair,” J. Neurotrauma, vol. 25, no. 6, pp. 677–685, Jun. 2008.

D. Backus, “Exploring the Potential for Neural Recovery After Incomplete Tetraplegia Through Nonsurgical Interventions,” PM&R, vol. 2, no. 12, pp. S279–S285, Dec. 2010.

M. Alam, W. Rodrigues, B. N. Pham, and N. V. Thakor, “Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives,” Brain Res., vol. 1646, pp. 25–33, 2016.

M. A. Lebedev and M. A. L. Nicolelis, “Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation,” Physiol. Rev., vol. 97, no. 2, pp. 767–837, 2017.

J. J. Shih, D. J. Krusienski, and J. R. Wolpaw, “Brain-Computer Interfaces in Medicine,” Mayo Clin. Proc., vol. 87, no. 3, pp. 268–279, Mar. 2012.

M. Rohm et al., “Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury,” Artif. Intell. Med., vol. 59, no. 2, pp. 133–142, Oct. 2013.

W. D. Memberg et al., “Implanted Neuroprosthesis for Restoring Arm and Hand Function in People With High Level Tetraplegia,” Arch. Phys. Med. Rehabil., vol. 95, no. 6, p. 1201–1211.e1, Jun. 2014.

A. Pedrocchi et al., “MUNDUS project: MUltimodal Neuroprosthesis for daily Upper limb Support,” J. Neuroeng. Rehabil., vol. 10, no. 1, p. 66, 2013.

R. Arnoldina, “Neurorehabilitation and Neuroprosthetic Technologies To Regain Motor Function Following Spinal Cord Injury,” ETH Zurich, 2014.

A. B. Ajiboye et al., “Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration,” Lancet, vol. 389, no. 10081, pp. 1821–1830, May 2017.

A. E. Hassanien and A. T. Azar, Eds., Brain-Computer Interfaces: Current Trends and Applications, vol. 74. Cham: Springer International Publishing, 2015.

L. M. Alonso-Valerdi, R. A. Salido-Ruiz, and R. A. Ramirez-Mendoza, “Motor imagery based brain–computer interfaces: An emerging technology to rehabilitate motor deficits,” Neuropsychologia, vol. 79, pp. 354–363, Dec. 2015.

S. Ulmer and O. Jansen, Eds., fMRI: Basics and Clinical Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

B. K. Das, Ed., Positron Emission Tomography. New Delhi: Springer India, 2015.

N. Naseer and K.-S. Hong, “Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain–computer interface,” Neurosci. Lett., vol. 553, pp. 84–89, Oct. 2013.

F. Lopes da Silva, “EEG and MEG: Relevance to Neuroscience,” Neuron, vol. 80, no. 5, pp. 1112–1128, Dec. 2013.

X. Yong and C. Menon, “EEG classification of different imaginary movements within the same limb,” PLoS One, vol. 10, no. 4, pp. 1–24, 2015.

C. Vidaurre, C. Klauer, T. Schauer, A. Ramos-Murguialday, and K. R. Muller, “EEG-based BCI for the linear control of an upper-limb neuroprosthesis,” Med. Eng. Phys., vol. 38, no. 11, pp. 1195–1204, 2016.

A. Shakeel, M. S. Navid, M. N. Anwar, S. Mazhar, M. Jochumsen, and I. K. Niazi, “A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials,” Comput. Math. Methods Med., vol. 2015, pp. 1–13, 2015.

K. J. Miller, G. Schalk, E. E. Fetz, M. den Nijs, J. G. Ojemann, and R. P. N. Rao, “Cortical activity during motor execution, motor imagery, and imagery-based online feedback,” Proc. Natl. Acad. Sci., vol. 107, no. 9, pp. 4430–4435, Mar. 2010.

P. Ofner, A. Schwarz, J. Pereira, and G. R. Müller-Putz, “Upper limb movements can be decoded from the time-domain of low-frequency EEG,” PLoS One, vol. 12, no. 8, p. e0182578, Aug. 2017.

W. G. Walter, R. Cooper, V. J. Aldridge, W. C. McCallum, and A. L. Winter, “Contingent Negative Variation : An Electric Sign of Sensori-Motor Association and Expectancy in the Human Brain,” Nature, vol. 203, no. 4943, pp. 380–384, Jul. 1964.

H. H. Kornhuber and L. Deecke, “Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale,” Pflüger’s Arch. für die gesamte Physiol. des Menschen und der Tiere, vol. 284, no. 1, pp. 1–17, 1965.

O. F. do Nascimento, K. D. Nielsen, and M. Voigt, “Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions,” Exp. Brain Res., vol. 171, no. 1, pp. 78–90, May 2006.

J. Jin, B. Allison, Y. Zhang, X. Wang, and A. Cichocki, “An ERP-Based BCI Using and Oddbal Paradigm with Different Faces And Reduced Errors in Critical Functions,” Int. J. Neural Syst., vol. 24, no. 8, p. 1450027, Dec. 2014.

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Classification of covariance matrices using a Riemannian-based kernel for BCI applications,” Neurocomputing, vol. 112, pp. 172–178, 2013.

M. Congedo, A. Barachant, and A. Andreev, “A New Generation of Brain-Computer Interface Based on Riemannian Geometry,” arXiv Prepr. arXiv1310.8115, vol. 33, no. 0, Oct. 2013.

S. Mingxu, “A FES Control System for Upper Limb Rehabilitation,” University of Salford, 2014.

I. Systems and A. Technology, “A Study of Controlling Upper-Limb Exoskeletons Using EMG and EEG signals,” Saga University, 2014.

E. López-Larraz, L. Montesano, Á. Gil-Agudo, and J. Minguez, “Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates,” J. Neuroeng. Rehabil., vol. 11, no. 1, p. 153, 2014.

A. Schwarz, P. Ofner, J. Pereira, A. I. Sburlea, and G. R. Müller-Putz, “Decoding natural reach-and-grasp actions from human EEG,” J. Neural Eng., vol. 26, no. 10, p. 105037, Aug. 2017.

D. Liu, W. Chen, R. Chavarriaga, Z. Pei, and J. del R. Millán, “Decoding of Self-paced Lower-Limb Movement Intention: A Case Study on the Influence Factors,” Front. Hum. Neurosci., vol. 11, no. November, pp. 1–12, Nov. 2017.

L. Randazzo, I. Iturrate, R. Chavarriaga, R. Leeb, and J. R. Del Millan, “Detecting intention to grasp during reaching movements from EEG,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, vol. 2015–Novem, pp. 1115–1118.

E. Lew, R. Chavarriaga, S. Silvoni, and J. Millán, “Detection of self-paced reaching movement intention from EEG signals,” Front. Neuroeng., vol. 5, no. July, pp. 1–17, 2012.

L. Yang, H. Leung, D. A. Peterson, T. J. Sejnowski, and H. Poizner, “Toward a Semi-Self-Paced EEG Brain-Computer Interface: Decoding Initiation State from Non-Initiation State in Dedicated Time Slots,” PLoS One, vol. 9, no. 2, p. e88915, Feb. 2014.

Y. Li et al., “Multimodal BCIs: Target Detection, Multidimensional Control, and Awareness Evaluation in Patients with Disorder of Consciousness,” Proc. IEEE, vol. 104, no. 2, pp. 332–352, 2016.

J. Arcos-Argoty, E. Cossio-García, and R. Villa-Torres, “Evaluación experimental y estadística de un prototipo de intefaz cerebro-computadora (ICC),” Rev. Ing. Biomédica, vol. 4, no. 8, pp. 22–33, 2013.

P. A. Vélez-Ángel, H. Villafañe-Saldarriaga, and H. Loaiza-Correa, “Clasificación Básica de Neuroseñales,” Universidad Tecnológica de Pereira, 2010.

D. A. Reyes-Lopez, M. Arias-López, J. E. Duarte-Sánchez, and H. Loaiza-Correa, “Implementación en FPGA de un clasificador de movimientos de la mano usando señales EMG,” Redes Ing., vol. 6, no. 1, p. 85, Sep. 2015.

M. D. Luciw, E. Jarocka, and B. B. Edin, “Multi-channel EEG recordings during 3,936 grasp and lift trials with varying weight and friction,” Sci. Data, vol. 1, pp. 1–11, 2014.

D. Steyrl, R. Scherer, J. Faller, and G. R. Müller-Putz, “Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: A practical and convenient non-linear classifier,” Biomed. Tech., vol. 61, no. 1, pp. 77–86, 2016.

J. D. Wander et al., “Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill,” PLoS Comput. Biol., vol. 12, no. 8, pp. 1–20, 2016.

R. O’Hare, “The mind-reading robotic hand that lets quadriplegic people grasp everyday objects,” Spinal Cord Injury Zone, 2016. [Online]. Available: http://www.spinalcordinjuryzone.com/news/17563/mind-reading-robotic-hand-lets-quadriplegic-people-grasp-everyday-objects. [Accessed: 03-Feb-2017].




DOI: https://doi.org/10.24050/19099762.n24.2018.1222

Métricas de artículo

Vistas de resumen
31




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.


UNIVERSIDAD EIA

Sede de Las Palmas: Km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Código Postal: 055428
Tel: (574) 354 90 90. Fax: (574) 386 11 60

Sede de Zúñiga: Calle 25 Sur 42-73 Envigado, Colombia. Código Postal: 055420
Tel: (574) 354 90 90. Fax: (574) 331 34 78
NIT: 890.983.722-6

Sistema OJS - Metabiblioteca |