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Abstract—Cardiopulmonary auscultation is a diagnostic procedure that has a challenging task since the components of heart 
rate and lung sounds overlap. There were many approaches to quantify the characteristics of these signals, and one of the newest is 
the voice activity detection (VAD) and the Gaussian Mixture Models (GMM). Considering the lung and heart sounds as acoustic 
events, this paper proposes a novel assessment methodology of these diagnostic indicators. Here, a new VAD based on GMM 
(VAD-GMM) was applied to detect and extract the main events in lung sound and heart sounds. VAD-GMM results were compared 
with other VAD methodology based on statistical approach, and it was found that VAD-GMM give more definite results. Since Mel 
Frequency Cepstral coefficients (MFCC) and Quartiles feature vectors, were already successful in pattern recognition, VAD-GMM 
was carried out using this kind of acoustic vectors. Therefore, this method could add in a transition from qualitative traditional 
auscultation to quantitative assessment and assisted computerized diagnosis by identifying abnormal acoustic indicators. Diagnosis 
by computerized detection promises to be a more efficient method than traditional methods, which are limited by the auditory 
capability and experience of a medical professional.  

Keywords—Cardiopulmonary diagnosis, Gaussian Mixture Models (GMM), Hidden Markov Models (HMM), Hilbert 
transform, Voice Activity Detection (VAD).

SubdiviSión Guiada de vad ampliada de SonidoS CardiopulmonareS

Resumen—La auscultación cardiopulmonar es un procedimiento de diagnóstico que tiene una tarea difícil ya que los componentes 
de la frecuencia cardíaca y los sonidos pulmonares se superponen. Hubo muchos enfoques para cuantificar las características de 
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estas señales, y uno de los más nuevos es la detección de actividad de voz (VAD) y los modelos  mezclados gaussianos (GMM). 
Considerando los ruidos pulmonares y cardíacos como eventos acústicos, este artículo propone una nueva metodología de evaluación 
de estos indicadores de diagnóstico. Aquí, se aplicó un nuevo VAD basado en GMM (VAD-GMM) para detectar y extraer los 
eventos principales en el sonido pulmonar y cardíaco. Los resultados de VAD-GMM se compararon con otra metodología de VAD 
basada en el enfoque estadístico, y se descubrió que VAD-GMM da resultados más definitivos. Dado que los coeficientes cepstrales 
de frecuencia de mel (MFCC) y los vectores de características de cuartiles, ya tuvieron éxito en el reconocimiento de patrones, 
VAD-GMM se llevó a cabo utilizando este tipo de vectores acústicos. Por lo tanto, este método podría agregar una transición de la 
auscultación tradicional cualitativa a la evaluación cuantitativa y el diagnóstico computarizado asistido mediante la identificación de 
indicadores acústicos anormales. El diagnóstico por detección computarizada promete ser un método más eficiente que los métodos 
tradicionales, que están limitados por la capacidad auditiva y la experiencia de un profesional médico.

Palabras clave—Diagnóstico Cardiopulmonar, Modelos  Mezclados Gaussianos (GMM), Modelos Ocultos de Markov 
(HMM), Transformación de Hilbert, Detección de Actividad de Voz (VAD).

SubdiviSão Guiada da dav prolonGada doS SonS CardiopulmonareS

Resumo—A ausculta cardiopulmonar é um procedimento de diagnóstico que tem uma tarefa difícil e os componentes da 
frequência cardíaca e dos sons pulmonares se sobrepõem. Havia muitas abordagens para quantificar as características desses 
sinais, e uma das mais recentes é a detecção de atividade de voz (VAD) e modelos de mixagem gaussiana (GMM). Considerando 
os ruídos pulmonares e cardíacos como eventos acústicos, este artigo propõe uma nova metodologia para avaliar esses indicadores 
diagnósticos. Aqui, um novo VAD baseado em GMM (VAD-GMM) foi aplicado para detectar e extrair os principais eventos 
no som pulmonar e cardíaco. Os resultados do VAD-GMM foram comparados com outra metodologia do VAD com base na 
abordagem estatística, e verificou-se que o VAD-GMM fornece resultados mais definitivos. Como os coeficientes de frequência 
de mel cepstral (MFCC) e os vetores característicos do quartil já eram bem-sucedidos no reconhecimento de padrões, o VAD-
GMM realizou o uso desse tipo de vetores acústicos. Portanto, esse método pode adicionar uma transição da ausculta qualitativa 
tradicional para avaliação quantitativa e diagnóstico computadorizado assistido, identificando indicadores acústicos anormais. 
O diagnóstico computadorizado promete ser um método mais eficiente do que os métodos tradicionais, limitados pela audição e 
experiência de um profissional médico.

Palavras-chave—Diagnóstico Cardiopulmonar, Modelos Gaussianos de Mixagem (GMM), Modelos Ocultos de Markov 
(HMM), Transformação de Hilbert, Detecção de Atividade Vocal (DVA).

i.   introduCtion

Practically most initial cardiopulmonary evaluations 
encompass auscultation but up to now involving 

mostly descriptive terms rather than quantitative 
characterization [1]. In particular, cardiopulmonary 
auscultation is a challenging task as the frequency 
components of the heart and lung sounds overlap. The 
S1 and S2 are the two dominant components of the heart 
sounds. The S3 and S4 are not as easily detectable due to 
their magnitude, with S3 which could be normal in children, 
pregnancy, or well fit persons, while S4 very often is 
indication of abnormality. The inspiratory and expiratory 
phases of respiration cycles could also contain very useful 
diagnostic indicators, and for example indicate presence of 
wheezes or other abnormal sounds [1]. Different authors 
[2-6] propose diverse feature extraction methods of Lung 
Sounds (LS) and Heart Sounds (HS) [2]. The HS extraction 
was improved, applying Hilbert transform. Also, Heron’s 
formula was used to obtain S1 and S2 components from 
the signal. Some authors  [3, 4], propose methods of Voice 
Activity Detection (VAD) and Mel Frequencies Cepstral 
Coefficients (MFCC) to extract important events from LS. 

In general, the main drawback is the noise (environmental 
noise, cardiac noise or pulmonary noise depending on the 
diagnostic objective) [3]. 

The idea behind VAD is to find segments in a signal, 
which contain diagnostically useful information and at 
the same time avoid segments associated with silence, or 
background noise without useful information. Originally, 
this idea was supported by energy and zero-crossing 
principles, since the voice segments have more energy and 
less zero-crossings than the noise segments [7]. Later works 
applied statistical principles [8], taking into account that HS 
and LS are sounds containing information useful to discover 
some abnormalities. Therefore, utilization of VAD could 
contribute to improve diagnosis. In particular this work is 
focused on a novel method encompassing a computerized 
detection of inhalation and exhalation related acoustic 
events based on Gaussian Mixture Models (GMM). 

Further filtering techniques allow separation and 
extraction of another extraneous sounds such as for example 
snoring which can be present during respiration [9]. The 
need of documenting diagnostic indicators and general basic 
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infrastructure norms should be also taking into account a 
clinical setting [10, 11].

Unfortunately, auscultation with a commonly used 
traditional stethoscope presents several challenges, such 
as the presence of environmental noise and the overlap of 
the HS and LS frequency components. As a result, the 
perception of cardiac sounds is limited due to the hearing 
capability and experience of the medical practitioner. 
Also, these sounds may include frequency components 
and intensity levels outside of the human auditory range.  
For these reasons,   it is difficult to diagnose the existence 
of certain abnormalities [12]. Therefore, a system that 
does not depend on human hearing, and which can detect 
and classify cardiopulmonary sounds utilizing automated 
computerized methods, would significantly contribute to 
improved diagnosis. 

Some related diagnostic approaches are focused on 
endemic diseases, where the acoustic characteristics of 
cough and crepitation are used to compute vectors of 
MFCC, applying Wavelets [13].

In other approach, the cardiac sounds envelope is 
extracted by the Hilbert-Huang Transform (HHT), and 
the cardiac sounds are segmented by the double-threshold 
method [16]. In another study [18], a localization method 
for S1 and S2 is suggested, which is based on an algorithm 
involving frequency filtering, energy detection, and interval 
duration. The accuracy of the localization was evaluated by 
comparing the algorithm with a localization method based 
on traditional Hilbert transform (HT) [18].

In [19], a computerized method for segmentation and 
analysis of peak detections in HS patterns is proposed, 
with emphasis on the characteristics of HS envelopes and 
taking into account the properties of the Hilbert Transform. 
Through the use of MFCC as well as applying the VAD, the 
most important characteristics of the events are obtained 
[20]. Besides that, some authors propose the extraction of 
main characteristics by the Fast Fourier Transform (FFT), to 
carry out classification [21].

Here is proposed to detect events of S1, S2 in 
HS signals with the presence of S3 and S4. Applying 
Hilbert transform allows the detection of extreme points 
(maximum and minimum). In addition, with the support 
of VAD techniques, which are based on GMM models, 
computerized extraction is performed on LS and HS signals.

ii.   S1, S2, S3 and S4 SoundS

The heart sounds are composed of two main sounds 
S1 and S2 and on occasions there are two more signals 
identified as S3 and S4 which can be present in normal 
subjects or reflect pathological conditions. The first sound 

S1, and the second sound S2, are produced by opening the 
atrioventricular valves and the closure of the semilunar 
valve, respectively and vice versa. The sounds S3 and S4 
occur at the end of S2 due to the vibration of the blood 
flow inside the ventricles, the fourth sound S4 is just 
before S1 due to the contraction of the atrium [22]. Table 
I summarizes the most relevant characteristics of HS 
regarding duration, frequency and other characteristics, 
Table I was obtained based on papers [23-25], and 
measurements carried out on signals.

iii.   methodoloGy

The fundamental concepts of the pre-processing, 
modeling and characteristics of signals encompassing 
lung sounds (LS) and heart sounds (HS) in presented 
experiments are explained in this section.

A.   Hilbert Transform

When a signal is evaluated either in time or frequency, 
the real and the imaginary parts in the other domain are 
linked by the Hilbert transform [6] [44]. Formally, the 
Hilbert transform is defined as the convolution of f(t) with 
the function -1/πt:

(1)

Hilbert transform does not change the amplitude 
spectrum, only shifts π/2 for positive frequencies and -π/2 
for negative frequencies. If one writes a complex function 
in the following way:

(2)

The envelope E(t) of a function f(t) is defined, as the 
module of its analytic function:

(3)

B. Acoustic Vectors (MFCC and Quartiles), GMM 
Modelling and VAD 

In MFCC acoustic vectors, the sounds are parameterized 
by implementing a pre-emphasis with FIR filters, followed 
by a Hamming window applied to each analyzed frame [26-
29]. In this project, the experiments were carried out using 
50 ms (LS signals) and 130 ms (HS signals) Hamming 
windows with a 50% shift for both signals, to which the 
Fast Fourier Transform (FFT) was applied; subsequently, 
the module was obtained and then multiplied by a filter 
bank whose frequency range and central frequencies were 
distributed per the Mel or Bark scale. 
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This was followed by calculating a log stage of 
the values previously obtained from each filter and 
subsequently the Inverse Fourier Transform. As the outcome 
a feature vector called MFCC was obtained [4, 30, 31]. 
Feature vectors called MFCC were applied [4, 30, 31] with 
13 coefficients per vector.

Other experiments were based in quartiles, in this case 
the duration of the phase of inhalation ( ~1.5 s.) and the 
phase of exhalation (~2.5 s.) for the most LS signals used 
[32].  In quartiles vectors, each frequency value f0.25,..., 
f0.75 corresponds to its respective quartile coefficient as 
shown below [32].

(4)

A Gaussian mixture model (GMM) is a probabilistic 
model which states that all generated data points are 
derived from a mixture of a finite Gaussian distributions 
that has no known parameters. The parameters for Gaussian 
mixture models are computed either with the maximum 
a posteriori estimation or the iterative expectation-
maximization algorithm. Mathematically, GMM are a 
weighted sum of component Gaussian densities. GMM 
are used in biometric systems where the parametric model 
helps in understanding the behavior of experiment or event. 

In our experiments GMM modeling uses the 
expectation–maximization (EM) algorithm to train the 
models   The average  represents the 
average of all vectors, while the �i covariance matrix 
models the variability of characteristics of an acoustic 
class [33]. In equation (5),  it is an MFCC or Quartile 
vector, while  are the weights of each 
density in the model [27, 30]. 

(5)

A Voice Activity Detector (VAD) is used to identify 
speech presence or speech absence in audio, or in our 
case sound presence or absence related with LS and HS 
signals. Basic VAD algorithms are based in energy and 
zero-crossing rate measures of data frames, but now there 

are alternative algorithms. In perfectly clean conditions 
even a simple energy detector will do a perfect task at 
detecting LS-HS; unfortunately, perfectly clean signals are 
not possible to get in hospitals or doctor offices. That is 
why proposed VAD is based on GMM. Normally, a VAD 
is used to classify voiced and unvoiced parts of speech as 
well as silence. The features introduced on this work are 
suited to classify activity (LS or HS), noise and silence.

C.  VAD based on GMM Modelling

The common voice activity detection (VAD) algorithm 
is the VAD Rabiner-Schur algorithm [7,8], but others 
authors, have contributed in this area [34-37]. GMM was 
successful classifying voice [38-40]. For the lungs, the 
events to consider are the inhalation and exhalation; for the 
heart the S1, S2, S3 and S4 sounds are events of interest. 
Here, a version of VAD based on Gaussian Mixture Models 
(GMM) is proposed, this allows us to detect the active 
segments of interest in the signals. 

The sets of HS signals were filtered, centered and 
bleached. A Butterworth low pass filter of order 7 and 
a cutoff frequency of 150 Hz was applied. Initially, 
active signals segments were cut manually from the 
original corpus, theirs end-points were detected visually 
from their graphics; a new set of signals that contain 
only events (S1, S2, S3, S4, or inhalation, exhalation 
depending on the case) were obtained, and these were 
called manual segmentation. Manual segmentation 
means to separate segments visually from the graphics 
of the cardiopulmonary signals sound. With this new 
set, acoustic vectors were computed, and then the 
GMM models corresponding to each class (HS or LS). 
These GMM models were the base of the VAD method 
proposed, and to determine activity zones (corresponding 
to the event) and zones of non-activity (noise or silence). 

In the detection with GMM of the signal, a value of 1 
was assigned to activity zones and 0 to silence or noise; 
this was multiplied by the original signal, by obtaining a 
new signal composed by activity only. 

When the VAD system was applied to the complete 
signals, MFCC vectors were computed over complete 

Table 1. Main Characteristics In HS Sounds

Sound Auscultation point Freq. Characteristics Duration Form of auscultation

S1 Mitral with greater intensity 
than the tricuspid 30- 120 Hz Caused by systole 0.08 – 0.16 sec (0.14 

sec)
Stethoscope 
diaphragm

S2 Mitral 70-150 Hz By the aortic valve closure 0.06 – 0.12 sec. (0.11 
sec)

Stethoscope 
diaphragm

S3 Mitral 27-70 Hz Diastole due to ventricular dysfunction 0.04 - 0.08 sec Stethoscope bell

S4 Mitral 10-50 Hz Auricular noise due to voltage in valves 0.03 – 0.06 sec Stethoscope bell
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signals, and the proposed VAD determined if each 
MFCC corresponded to an activity region or to a non-
activity (silence or background noise). The signals 
and their cuts were converted to vectors MFCC for 
purposes of calculating VAD-GMM models. Since the 

sixth MFCC component has more energy in inhalation 
than in exhalation segments [4], the mean of the 
sixth components of the MFCC vectors was applied 
as a threshold to distinguish between inhalation and 
exhalation frames.

Fig. 1. VAD-GMM System.
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D. S1 and S2 detection 

Two models based on the VAD-GMM algorithm 
were applied to the set of acoustic signals to detect and 
segment automatically S1, S2 and the silence zones. 
After computerized detection of S1 and S2, the Hilbert 
envelope of the signal was computed, where the envelope 
was compared with the original signal (i.e., the normalized 
signal). Subsequently, the Hilbert envelope was smoothed 
by a Butterworth filter; after several experiments with 
each frequency between 7-25 Hz, 8 Hz was selected as 
the best choice [6]. Since the amplitude for S1 is higher 
than for S2, it can be used to distinguish between them. 
The thresholds to differentiate between S1 and S2 is 
basically the mean of their amplitude. If the amplitude 
is higher than the threshold is the case of S1, in other 
case S2. Thresholds based on amplitude are computed to 
establish the peaks corresponding to S1 and S2. This is 
accomplished by applying minimums and maximums, 
considering a minimum as the start of one peak and 
another minimum as the end of the same peak, it can be 
extracted automatically. In the algorithm was important to 
distinguish between systolic and diastolic segments that 
is why S1 and S2 could be identified by their particular 
sounds, and allow to determinate which one was the first 
in the signal recording. The purpose is to separate systole 
and diastole in pair or unpaired signals when the signal 
starts with S1 the unpaired segment corresponds to systole, 
while the pairs correspond to diastole; if the signal starts 
with S2, the pairs correspond to systole and unpaired 
correspond to diastole. From these signals, it is possible to 
obtain the time durations (width) of S1 and S2.

E. Database

Signals from RALE database [45], were filtered with 
7.5 Hz band-pass Butterworth filter to suppress any DC 
offset. Besides, an eight-order Butterworth low-band 
filter was applied at 2.5 kHz to avoid overlapping; these 
signals were sampled at 11025 Hz. The LS normal signals 
from the original RALE database were segmented, theirs 
end-points were detected visually from their graphics (by 
the authors); this step was done to obtain only segments 
of inhalation-exhalation from signals, making a total of 20 
inhalations and 20 exhalation recordings in wav format. 
The HS set signals used for experiments come from [28, 
46]. Hence, 20 normal signals were segmented, obtaining 
20 sounds for S1 and 20 for S2; the sampling frequency 
was 11025 Hz. The signals were partitioned in training set 
and evaluation set. Experimentally, it was found that the 
time length intervals of the signal phases for LS were 1.5 
seconds for inhalation, and 2.5 seconds for exhalation.

Concerning HS, the S1 lasts 0.1 to 0.12 seconds; S2 
is between 0.8 to 0.14 seconds [47]. The evaluation was 

performed by means of leave-one-out method, where 
a signal is left for evaluation, and using the remaining 
signals to calculate the model and changing the settings 
until all possibilities were exhausted. 

F. Classification

The cardiac cycle consists of two main acoustic 
events, the first heart sound, “S1” and the second heart 
sound “S2”. The lung sounds (LS) occurrence is also a 
cyclical process formed by two main events, inhalation 
and exhalation. The HS and LS signals have silences 
between their main events, and both cases are sequences 
that may vary depending on health conditions, and even 
the person’s mood. Then, these are modeled as Hidden 
Markov Models (HMM). An HMM is a state-based model, 
in which each state is characterized by a GMM. HMM is 
explained exhaustively in [7]; the HMM are expressed as 
triplets λ= (A, B, π) Fig. 2.. 

Fig. 2. HMM model with λ= (A, B, π)

Where A is a matrix which gives us the probability of 
transition from one state to other, B (in our case GMM) 
gives us the probability of acoustic vector (MFCC or 
Quartile vector) which was generated from one state, and 
π is the probability to start in one state. The training for 
the HMM parameters were computed with the forward-
backward algorithm [7]. 

Since leave-one-out method was applied and the 
efficiency measured in error rate, the inhalation and 
exhalation, S1, S2, S3 and S4 signals’ sets were used to 
compute models per class and its evaluation. In leave-
one-out method, during each test one signal from the set 
n (n = 20) is used for evaluation, while the remaining n-1 
signals are used to compute the model. Considering n 
signals, n evaluations are done, but in each evaluation test, 
the signal’s test and the n-1 remaining signals are used to 
compute the model
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iv. reSultS and diSCuSSion

Once the methodologies described in the previous 
section are applied, it is important to check if they 
are really effective. For this purpose, experiments of 
classification applying Hidden Markov Models (HMM) 
were carried out. Applying computerized detection 
with VAD-GMM a graph shown in Fig. 2 is obtained, 
at the same time this gives us the beginning and the end 
index of the events extracted from this data. For the first 
classification experiment a database of 20 inhalations and 
20 signals of exhalation was used, which were obtained by 
computerized detection applying VAD. 

Fig. 3. Computerized segmentation LS with VAD-GMM algorithm

To evaluate the efficiency of this process, it was 
experimented with different architecture configurations 
of HMM models, as well as two kinds of acoustic vectors 
(quartiles and MFCC). The results of classification 
efficiency are shown in Table 2.

Table 2. Efficiency of LS classification with VAD applying 
automatic detection LS [4]

# of states # of Gaussians
Acoustic 
vectors

Classification 
efficiency

3 3 Quartiles 77.5%

3 3 MFCC 76.25%

2 3 Quartiles 75%

2 3 MFCC 70%

For the second experiment, the same sets of LS signals 
that previous experiments were utilized, but in this case 
VAD-GMM was applied, as shown in Table 3.

Table 3. Efficiency of LS Classification of Automatic Detection in 
LS with VAD-GMM

# of states # of Gaussians
Acoustic 
vectors

Classification 
efficiency

3 3 Quartiles 85.63%

3 3 MFCC 95%

2 3 Quartiles 88.13%

2 3 MFCC 91.25%

In the third experiment, a set of S1 and S2 signals 
obtained by computerized detection of HS (Fig. 4) 
were used. As well VAD-GMM was applied; the best 
classification result for S1 and S2 was 92.7%. As can 
be seen in Table 4 both acoustic vectors were used to 
compute models, with two HMM-GMM architectures 
configurations and the best results were attained with 3 
states and 3 Gaussian by state.

Fig. 4. Computerized segmentation of HS signals with VAD-GMM 
algorithm

As shown in Table 2, the best classification result what 
was obtained is 77.5% with VAD (not based on GMM) 
while with VAD-GMM 95% achieved as shown TABLE 
III, and this demonstrates the superiority of VAD-GMM. 
Even in HS events 

(S1 and S2) detection and extraction VAD-GMM 
performed well as shown in the TABLE IV; it means 
that VAD-GMM can determine to which event belongs 
a vector and no matter what kind of vector (Quartile or 
MFCC). GMM utilization improves the capacity of VAD 
to associate an acoustic vector with its correct class. This 
is reasonable since in speaker recognition schemes the 
identification to what class belongs an acoustic vector is 
common done with GMM. In addition to computerized 
detection and extraction, VAD-GMM could provide 
a documented record for long term monitoring and 
comparative analysis. 

Table 4. Efficiency of LS Classification of Automatic Detection of 
HS With VAD-GMM

# of states # of Gaussians
Acoustic 

vector
Classification 

efficiency

3 3 Quartiles 92.7%

3 3 MFCC 90.38%

2 3 Quartiles 87.31%

2 3 MFCC 91.25%

The results of classification for S1, S2, S3 and S4 
were obtained with partitions completed with leave-
one-out method and measured in error rate. To measure 
the efficiency of the VAD-GMM proposed method, 
classification was made with the events of new signals 
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set obtained by computerized detection. Classification 
experiments were carried out applying Hidden Markov 
Models (HMM) on the new set of signals. Applying VAD-
GMM computerized detection Fig. 5 and 6 were obtained, 
this also shows the start and end indexes of each extraction 
event. HS classification experiments were carried out, 
a database of 20 signals of S1, S2 and S3; the same 
experiments were carried out with 20 signals of S1, S2 and 
S4. In both cases, the signals were extracted automatically 
with VAD-GMM.

Fig. 5. Detection of events S1, S2 and S3 in signal HS

Fig. 6. Detection of events S1, S2 and S4 in signal HS

The best results for S1, S2 and S3 of classification 
efficiency are shown in Table 5, being an architecture 
composed of 2 states and 3 Gaussians by state, obtaining 
up to 96.98% of classification efficiency.

Table 5. Classification Efficiency with VAD Applying Computerized 
Detection in HS Signals with S1, S2 and S3

# of States # of Gaussians Acoustic vector
Classification 

efficiency

3 3 Quartiles 90.48%

3 3 MFCC 95.40%

2 3 Quartiles 85.08%

2 3 MFCC 96.98%

For the second experiment with HS, the same set of 
signals was used as in the previous experiment (this time 
for S1, S2 and S4), obtaining better classification results 
with a composition of 2 states and 3 Gaussians by state 
using MFCC vectors, as shown in Table 6.

Table 6. Efficiency of classification with VAD applying 
computerized detection in HS signals with S1, S2 and S4

# of states # of Gaussians Acoustic vector
Classification 

efficiency

3 3 Quartiles 90.21%

3 3 MFCC 96.11%

2 3 Quartiles 91.34%

2 3 MFCC 97.22%

In order to compare results, the experiments with 
manual segmentation for LS and HS signals are shown in 
Table 7. Next, these segments are stored as independent 
wav files.

Table 7. Classification Efficiency of the Manual Detection of LS and 
HS with VAD-GMM

Signal
Acoustic 

vector
# of 

Gaussians
# of states

Classification 
efficiency

Insp-
Exp

MFCC

3 3 88.84

2 3 83.07

2 2 86.15

Quartiles

3 3 79.23

2 3 82.30

2 2 71.93

S1-S2

MFCC

3 3 84.61

2 3 84.61

2 2 84.61

Quartiles

3 3 52.5

2 3 68.46

2 2 57.69

First, a set with manual segmentation of the events 
was obtained, this new set was used to calculate GMM 
models as the basis of the proposed VAD method. 
Next, the VAD-GMM was applied to segment LS-HS 
signals, while evaluating efficiency, HMM models were 
calculated using the set obtained with the proposed VAD 
that has been modified using GMM.  The results obtained 
with computerized segmentation indicate that manual 
segmentation performed by a person, can be substituted 
with automated outcome as the result of VAD-GMM. In 
addition, this process is more objective and less dependent 
on the auditory and visual capacities of a health professional 
performing auscultation, which is subjective by nature if the 
observations are only recorded verbally and if the process 
does not involve technological support as proposed above.

v. ConCluSion

The classification efficiency was augmented applying 
VAD-GMM computerized detection. With the first VAD 
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algorithm, 77.5% of efficiency was achieved, while with 
VAD-GMM reached 95%. 

Computerized detection of events in HS signals was 
improved by using VAD-GMM technique combined 
with Hilbert transform. A set of 20 signals (for each of 
the events) composed of S1, S2, and S3 was obtained by 
computerized detection; similarly, another set composed of 
S1, S2 and S4 was evaluated. The classification of signals 
was carried out applying two sets, one obtained by manual 
selections, and another by computerized detection. The 
classification was done with HMM, attaining up to 96.9% 
efficiency for the sounds of S1, S2 and S3; while for S1, 
S2 and S4 was 97%.

The 8 Hz edge frequency to smooth the signal 
envelope could change, due to the sampling frequency. 
However, model parameters could be better with a broader 
database; even the methodology would still be valid.

The VAD-GMM application adds to potential 
transition from qualitative auscultation to quantitative 
assessment and assisted computerized diagnosis by 
identifying abnormal acoustic indicators. Diagnosis 
of these indicators aided by computerized detection 
could be a more efficient and beneficial than traditional 
auscultation, which is also hindered by the auditory 
capability and experience of a medical professional. This 
method could also be used in general practice or utilized in 
a nursing home for screening of selected patients.
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